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An Approximation Method for Exact Boundary
Controllability of Euler-Bernoulli System

Abdelaziz Khernane, Naceur Khelil, Leila Djerou

Abstract—The aim of this work is to study the numerical
implementation of the Hilbert Uniqueness Method for the exact
boundary controllability of Euler-Bernoulli beam equation. This study
may be difficult. This will depend on the problem under consideration
(geometry, control and dimension) and the numerical method used.
Knowledge of the asymptotic behaviour of the control governing the
system at time T may be useful for its calculation. This idea will
be developed in this study. We have characterized as a first step, the
solution by a minimization principle and proposed secondly a method
for its resolution to approximate the control steering the considered
system to rest at time T.

Index Terms—Boundary control, exact controllability, finite
difference methods, functional optimization.

I. INTRODUCTION

THE problem of exact controllability is one of the most
important analysis of distributed systems (i.e systems

whose state is given by solving a partial differential equation).
A conventional method of solving this problem was proposed
by [15]. Others followed, like HUM (Hilbert Uniqueness
Method), developed by [11]-[13], by treating the problem
particularly in the context of Euler-Bernoulli beam equation
with action on the Dirichlet boundary. This method is to solve
this equation:

Λ{ϕ0, ϕ1} = {y1,−y0} (1)

where y0 and y1 are the initial conditions of the system and
Λ an isomorphism between E and it’s dual E’.

The resolution of (1) may be difficult. This will depend
on the problem under consideration (geometry, control type
and dimension) and the numerical method used. According
to [1], knowledge of the asymptotic behaviour of the control
governing the system at time T may be useful for its
calculation. This idea will be developed in this study. More
precisely, we determine explicit formulas for ϕ0 and ϕ1,
and therefore explicitly control. An example is presented to
illustrate this approach.

The remainder of this paper is organized as follows: Section
II defines the exact Dirichlet boundary controllability problem
for the Euler-Bernoulli beam equation. Section III describes
the proposed method. In Section IV, explicit formulas are
presented to explicitly resolve the problem considered. In
Section V, an implementation of Hilbert Uniqueness Method
is presented. In Section VI, experimental results are presented.
Section VII concludes the paper.

II. FORMULATION OF THE PROBLEM

Let T denote a given positive number and let
y0(x) and y1(x) denote given functions defined
on Ω=]0,1[. Let Σ={0, 1}x]0,T[, Q=]0,1[x]0,T[ and
(y0, y1) ∈ L2(Ω)xH−2(Ω) [18].

The Exact Dirichlet boundary controllability problem for
the Euler-Bernoulli beam equation is: Find a control function
v defined on Σ such that y satisfies:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ytt + yxxxx = 0 in Q

y(x, 0) = y0(x) , ∂y
∂t (x, 0) = y1(x) in Ω

y(x, T ) = 0 , ∂y
∂t (x, T ) = 0 in Ω

y(0, t) = 0 , y(1, t) = 0 t∈[0,T]
∂y
∂x (0, t) = 0 ∂y

∂x (1, t) = v(t) t∈[0,T]

(2)

It is well known that state y and control function v such
that (2) is satisfied exist provided T positive [12], [13], [19].

Motivated by numerical methods presented in [2], [5],
[7]-[9] and particularly in [10], we adapt the latter to explicitly
solve the problem of exact boundary of Euler-Bernoulli beam
equation when the control is the Dirichlet type. For this
purpose, we characterized in a first step, the solution of (1)
by a minimization principle, which operates in a second step,
to determine explicitly {ϕ0, ϕ1}, and therefore the control
explicit v* such as y satisfies (2).

III. PROPOSED METHOD

A. Characterization of the Solution

The problem (1) may be written in the following form:{
Find ϕ ∈ E such as

< Λϕ,
∧
ϕ >=< {y1,−y0}, ∧ϕ > ∀ ∧

ϕ ∈ E
(3)

where ϕ = {ϕ0, ϕ1};
∧
ϕ = {

∧
ϕ0,

∧
ϕ1 }, E=H2

0 (Ω)xL
2(Ω),

E′ = H−2(Ω)xL2(Ω) and < ., . > denotes the duality product
between E’ and E.

A bilinear functional < Λ., . > is continuous, symmetric
and coercive. These properties, according to [16], are used to
characterize the solution of (3) by the principle of following
minimization:

B. Principle

Principle 1: Any Solution ϕ ∈ E of (3) sends the minimum
of the functional:

J(ϕ) =
1

2
< Λϕ,ϕ > − < {y1,−y0}, ϕ > (4)
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and reciprocally.
Proof: (3) is a special case of the following variational

problem:

{
Find u ∈ V such as

a(u, v) = L(v); ∀ v ∈ V (5)

where in (5)
(i) V is a real Hilbert space equipped with the scalar product
(.,.), the corresponding norm is ‖ . ‖
(ii) a: V x V −→ R is bilinear, continuous, symmetric and
coercive.
(iii)L: V −→ R is bilinear continuous.
With this assumptions, and after [16], (5) has a unique
solution in achieving the minimum in V of the functional
J(v)= 1

2a(v, v)− L(v); ∀v ∈ V and reciprocally.
If the principle is satisfied, simply take in [16];
V=E; a(.,.)=< Λ., . > and L :

∧
ϕ −→< {y1,−y0}, ∧ϕ >

C. Resolution Minimization Problem

Let the functional (4):
J({ϕ0, ϕ1})= 1

2 < Λ{ϕ0, ϕ1}, {ϕ0, ϕ1} > −(y1, ϕ0)+(y0, ϕ1)
According to [12] and [13], we have:

1

2
< Λ{ϕ0, ϕ1}, {ϕ0, ϕ1} >=

1

2

∫ T

0

[
∂2ϕ(1, t)

∂x2

]2
dt (6)

So:

J({ϕ0, ϕ1}) = 1

2

∫ T

0

[
∂2ϕ(1, t)

∂x2

]2
dt

−
∫
Ω

[
ϕ0y1 − ϕ1y0

]
dx

(7)

Solving (1) is then equivalent to solving the minimization
problem:

Inf
{ϕ0,ϕ1}∈E

J
({ϕ0, ϕ1}) (8)

Let {ϕ0
T , ϕ

1
T } the solution of (8). We are going to transform

(7) by introducing the T factor as:

T.J({ϕ0, ϕ1}) = T

2

∫ T

0

[
∂2ϕ(1, t)

∂x2

]2
dt−∫

Ω

[
y1Tϕ0 − y0Tϕ1

]
dx

(9)

Let:
ρ = T.ϕ
ρ is then the solution of the system:⎧⎪⎪⎨

⎪⎪⎩
∂2ρ
∂t2 + ∂4ρ

∂x4 = 0 in Q

ρ(x, 0) = ρ0 and ∂ρ
∂t (x, 0) = ρ1 in Ω

ρ = ∂ρ
∂x = 0 on Σ

(10)

T.J({ϕ0, ϕ1}) = 1

2T

∫ T

0

[
∂2ρ(1, t)

∂x2

]2
dt−∫

Ω

[
y1ρ0 − y0ρ1

]
dx

= J
({ρ0, ρ1})

(11)

The problem (8) becomes:

Inf J
({ρ0, ρ1}) (12)

Let {ρ0T , ρ1T } the solution of (12). One have:
ρ0T = Tϕ0

T and ρ1T = Tϕ1
T

According [1], if we consider:

ρ0 = lim
T→+∞

ρ0T (13)

ρ1 = lim
T→+∞

ρ1T (14)

it is possible to find explicitly (ρ0, ρ1). This method will lead
to numerical approximations very useful for computations. In
fact, it will be possible to make computations of ϕ0

T and ϕ1
T

by using:

ϕ0
T =

1

T
ρ0 (15)

ϕ1
T =

1

T
ρ1 (16)

IV. EXPLICIT FORMS

Let us consider the system (2).
Introduce eigenfunctions(ψj(x)).⎧⎪⎪⎨

⎪⎪⎩
d4ψj(x)

dx4 =λ2
jψj(x) in Ω

ψj = 0; on {0, 1}
dψj

dx = 0; on {0, 1}
Let us suppose the eigenvalues multiplicity is 1. The
eigenvalues of d4

dx4 are λ2
j where λj = μ2

j and

cosh(μj).cos(μj) = 1; j = 1, 2, · · · (17)

The eigenfuctions [3] are:

ψj(x) = (sin(μj)− sinh(μj)) .cos(μjx)

+ (cosh(μj)− cos(μj)) .sin(μjx)

+ (sinh(μj)− sin(μj)) .cosh(μjx)

+ (cos(μj)− cosh(μj)) .sinh(μjx)

(18)

Denote by ωj(x) the orthonormal eigenfunctions of d4

dx4 with
homogeneous Dirichlet condition. Consider (11) and look for:
lim

T→+∞
J
({ρ0, ρ1})

Let:

y0 =

∞∑
j=1

y0jωj and y1 =

∞∑
j=1

y1jωj (19)

with y0j = (y0, ωj) and y1j = (y1, ωj).
Then: ∫

Ω

y0ρ1dx =
∑
j

(y0, ωj)(ρ
1, ωj) (20)
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∫
Ω

y1ρ0dx =
∑
j

(y1, ωj)(ρ
0, ωj) (21)

By the same, we have:

ρ(x, t) =
∑
j

ρj(t)ωj(x) (22)

where

ρj(t) = (ρ0, ωj)cos(λjt) +
1

λj
(ρ1, ωj)sin(λjt) (23)

So:

1

2T

∫ T

0

[
∂2ρ(1, t)

∂x2

]2
dt

=
1

2T

∫ T

0

⎡
⎣∑

j,l

ρj(t).ρl(t)
d2ωj(1)

dx2
.
d2ωl(1)

dx2

⎤
⎦ dt

=
1

2

∑
j,l

d2ωj(1)

dx2
.
d2ωl(1)

dx2

[
1

T

∫ T

0

ρj(t).ρl(t)dt

]
(24)

We obtain in developing:

1

T

∫ T

0

ρj(t).ρl(t)dt

=
1

T

∫ T

0

{
(ρ0, ωj)cos(λjt) + (ρ1, ωj)

sin(λjt

λj

}
{
(ρ0, ωl)cos(λlt) + (ρ1, ωl)

sin(λlt

λl

}
dt

(25)

=
1

T

∫ T

0

[
(ρ0, ωj)(ρ

0, ωl)cos(λjt)cos(λlt)
]
dt (26)

+
1

T

∫ T

0

[
(ρ0, ωj)(ρ

1, ωl)cos(λjt)
sin(λlt

λl

]
dt (27)

+
1

T

∫ T

0

[
(ρ1, ωj)(ρ

0, ωl)cos(λlt)
sin(λjt

λj

]
dt (28)

+
1

T

∫ T

0

[
(ρ1, ωj)(ρ

1, ωl)
sin(λjt).sin(λlt)

λj .λl

]
dt (29)

and a quite calculation gives, forj �= l:

1

T

∫ T

0

[sin(λjt).cos(λlt)] dt

� 1

T

[
1

| λj + λl | +
1

| λj − λl |
] (30)

1

T

∫ T

0

[cos(λjt).cos(λlt)] dt

� 1

2T

[
1

| λj + λl | +
1

| λj − λl |
] (31)

1

T

∫ T

0

[cos(λjt).sin(λlt)] dt

� 1

T

[
1

| λj + λl | +
1

| λl − λj |
] (32)

1

T

∫ T

0

[sin(λjt).sin(λlt)] dt

� 1

2T

[
1

| λj − λl | +
1

| λj + λl |
] (33)

Then for j �= l:

1

T

∫ T

0

ρj(t).ρl(t)dt
T→∞−→ 0 (34)

and for j = l, we obtain:

1

2
− 1

4λjT
� 1

T

∫ T

0

sin2(λjt)dt �
1

2
+

1

4λjT
(35)

1

2
− 1

4λjT
� 1

T

∫ T

0

cos2(λjt)dt �
1

2
+

1

4λjT
(36)

and

1

T

∫ T

0

sin2(λjt)dt
T→∞−→ 1

2
(37)

1

T

∫ T

0

cos2(λjt)dt
T→∞−→ 1

2
(38)

1

T

∫ T

0

sin(λjt).cos(λlt)dt
T→∞−→ 0 (39)

So

1

T

∫ T

0

ρj(t).ρl(t)dt
T→∞−→[

1

2
(ρ0, ωj)

2 +
1

2λ2
j

(ρ1, ωj)
2

] (40)

Finally:

1

T

∫ T

0

ρj(t).ρl(t)dt
T→∞−→

δj l

[
1

2
(ρ0, ωj)

2 +
1

2λ2
j

(ρ1, ωj)
2

] (41)

where δj l = 1 for j = l and δj l = 0 for j �= l
and then:

1

2T

∫ T

0

[
∂2ϕ(1, t)

∂x2

]2
dt

T→∞−→

1

4

∑
j

[
(ρ0, ωj)

2 +
1

λ2
j

(ρ1, ωj)
2

] [
d2ωj(1)

dx2

]2 (42)

The problem (12) is then transformed to the minimization with
respect to ρ0 and ρ1 of:

1

4

∑
j

[
(ρ0, ωj)

2 +
1

λ2
j

(ρ1, ωj)
2

] [
d2ωj(1)

dx2

]2

−
∫
Ω

(y1ρ0 − y0ρ1)dx

=
∑
j

[
1

4
(ρ0, ωj)

2

[
d2ωj(1)

dx2

]2
− y1j (ρ

0, ωj)

]

+
∑
j

[
1

4λ2
j

(ρ1, ωj)
2

[
d2ωj(1)

dx2

]2
+ y0j (ρ

1, ωj)

]
(43)
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The first term of which does not depend on ρ1 and the second
does not depend on ρ0. The minimization of (43) leads then
to minimize:

1

4
(ρ0, ωj)

2

[
d2ωj(1)

dx2

]2
− y1j (ρ

0, ωj)

with respect to ρ0
(44)

and

1

4λ2
j

(ρ1, ωj)
2

[
d2ωj(1)

dx2

]2
+ y0j (ρ

1, ωj)

with respect to ρ1
(45)

The minimum is given by:

1

2
(ρ0, ωj)

[
d2ωj(1)

dx2

]2
− y1j = 0 (46)

1

2λ2
j

(ρ1, ωj)

[
d2ωj(1)

dx2

]2
+ y0j = 0 (47)

Finally, when T −→ ∞, we obtain:

ρ0 =
∞∑
j=1

2.(y1, ωj).ωj[
d2ωj(1)

dx2

]2 (48)

ρ1 = −
∞∑
j=1

2λ2
j (y

0, ωj).ωj[
d2ωj(1)

dx2

]2 (49)

Then we deduce to approximated one:

ϕ0
T =

2

T

m∑
j=1

(y1, ωj).ωj[
d2ωj(1)

dx2

]2 (50)

ϕ1
T =

−2

T

m∑
j=1

λ2
j (y

0, ωj).ωj[
d2ωj(1)

dx2

]2 (51)

(50) and (51) can be used directly for computations.

V. IMPLEMENTATION

A. Algorithmic Aspect

Let us consider once again the system (2). According
a method HUM of J.L LIONS, the control v* such as
satisfied (2) is v*= ∂2ϕ(1,t)

∂x2 . This computation necessitates the
computation of ϕ, solution of the system:⎧⎪⎪⎨

⎪⎪⎩
∂2ϕ(x,t)

∂t2 + ∂4ϕ(x,t)
∂x4 = 0 in Q

ϕ(x, 0) = ϕ0
T and ∂ϕ(x,0)

∂t = ϕ1
T in Ω

ϕ = ∂ϕ
∂x = 0 on Σ

(52)

where ϕ0
T and ϕ1

T are the initial conditions given in (50) and
(51). To judge the efficiency of the results, we consider a final
state error:

‖ξ‖2 = ‖y(., T )‖2L2(Ω) + ‖∂y(., T )
∂t

‖2L2(Ω)
(53)

The following general schema is used for the numerical
implementation:

Algorithm 1:
Step 1. Initial data y0and y1.
Step 2. Choice of m.
Step 3. Computation of ϕ0

T and ϕ1
T using formulas

(50)-(51).
Step 4. Integration of the system (52) and computation
‖v ∗ ‖2.
Step 5. Integration of the system (2) using the control v*.
Step 6. Computation of the final error ‖ξ‖2.
Return to Step 2.

The numerical method for integration of systems (2) and
(52) is based on a symmetric finite difference schema [4]-[17].

As the solutions of these systems are functions of the
independent variables x and t, we subdivide the x-t plane into
sets of equal rectangles of sides dx=h, dt=k, by equally spaced
grid lines, defined by xj = j.h, j integer and equally spaced
grid lines, defined by tn = n.k, n integer.
The (xj , tn) are called grid points, mesh points, or nodes
[6]-[14].

A Von Neumann’s stability condition of this explicitly
schema is:
V.N.S = k2

h4 ≤ 1
4 .

We used 50 discretizations points in space, and in time we
used an explicit symmetric finite difference schema with the
V.N.S number equal to 0,25.

VI. EXAMPLE AND DISCUSSION

We choose:
y0(x) = C.x2; y1(x) = 2.y0(x); m=4; T=0,5.
C is a coefficient chosen by numerical considerations (so that
y0 and y1 have reasonable magnitude).

Fig. 1 gives the numerical solution of the discretization
system corresponding to (52). Fig. 2 gives the form of
approximate control v* steering the system (2) to rest at time
T. Fig. 3 gives the numerical solution of the discretization
system corresponding to (2). Fig. 4 gives the variation of the
cost function. Fig. 5 shows that the final state error is close to
zero. This allows us to say that the explicit control v* steering
the system(2) to rest at time T.

0 0.2 0.4 0.6 0.8 1−5

0

5

10x 10−8 T=0.5 VNS=0.25

x

u

Num.Sol.

Fig. 1: Numerical solution of system (52)
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5

6
x 10−4 Control

v*

Fig. 2: Approximate control

0 0.2 0.4 0.6 0.8 1−4

−2

0

2

4x 10−5 T=0.5 VNS=0.25

x

y

Num.Sol.

Fig. 3: Numerical solution of system (2)

0 0.2 0.4 0.6 0.8 1
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1

2
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4
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x 10−8 Norm of the control v* power two

C
os

t

Fig. 4: Variation of the cost function

VII. CONCLUSION

Hilbert uniqueness method is implemented for the exact
boundary controllability of the Euler-Bernoulli beam equation.
The results found reflect the effectiveness of approximations
methods. However, we think that we can improve the calcul of

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10−3 Norm of y power two plus norm of yt power two

Fi
na

l e
rro

r

Fig. 5: Variation of the final error

the final error by using metaheuristics in future and studying
the case of dimension two for the same system.
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