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An Iterative Method for the Symmetric Arrowhead
Solution of Matrix Equation

Minghui Wang, Luping Xu, Juntao Zhang

Abstract—In this paper, according to the classical algorithm
LSQR for solving the least-squares problem, an iterative method is
proposed for least-squares solution of constrained matrix equation. By
using the Kronecker product, the matrix-form LSQOR is presented to
obtain the like-minimum norm and minimum norm solutions in a
constrained matrix set for the symmetric arrowhead matrices. Finally,
numerical examples are also given to investigate the performance.
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1. INTRODUCTION

ET R™" be the set of mxn real matrices, S4R""be the set

of nxn real symmetric arrowhead matrices and I, be the
identity matrix of order n. For any 4 R™", A", A", |4|, and
|4|, denote the transpose, Moore-Penrose generalized inverse,
Frobenius norm and Euclid norm, respectively.

For 4=(x,)er™ and BeR™ , A®B=(x,B)eR™"
represents the Kronecker product of 4 and B.

For A4=(x,,x,)eR™ , define vec(4)= (x,T,xZT;“,an)T
and y_,as the sub-vector consisting of the elements form
ath component to fth component of x, . The inverse
mapping of vec(:) form R™ to R™" which is denoted by
mat(-) satisfies mat(vec(A)) =4.

Definition 1. Let A< SAR™ . A is called the symmetric
arrowhead matrix if it has the following form:

X X Xy o Xy
Xy Xp 0 - 0
A={x;, 0 x5 -+ 0
x, 0 0 Xon

and vec, (4) stands for the corresponding vector
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’ T
(xl:n,l’x227x33"“’xrm) :

Symmetric arrowhead matrix has many applications in
modern control theory which can represent the parameter
matrix of nonlinear control systems. Such a matrix was
described as radiationless transition in the isolated molecules
and oscillator attached to a Fermi liquid [1]. At present, their
potential applications in electromagnetic compatibility have
been more important such as the mathematical representation
of interference factor.

Based on the study of [2], we consider the matrix equation

AXB+CYD =E. (D

Many people have studied the matrix equation above and
other constrained matrix equations, see [3], [4], [6], [8], etc. Xu,
Wei, and Zhang [2] gave the solution of (1) by making use of
the canonical correlation decomposition (CCD). Liao, Bai, and
Lei [5] studied the least-squares solution of (1) with the least
norm by combining CCD and general singular value
decomposition (GSVD).

In this paper, we discuss the least-squares solution of (1) for
the symmetric arrowhead matrix. When 4eR™",BeR"™,

CeR™,DeR",EeR™ and
={[X.7]|x e S4R"™".Y € AR
finding out [Xx.Y]eS,, such that
min|| AXB +CYD - E| . @

In [7], by using Moore-penrose inverse and the Kronecker
product, it discussed the best approximation problem (2) and
obtained a general expression of solutions.

For H =diag(H,.H,).P, =(B"® A)H,.P,=(B" ®A)H, ,
and finding R=(/-RR")R,

G=R"+(I-R'R)ZP] (R, ) “(1-BRY),
A

I- ))

K, =I-B'R+PRRZ(I-R'R)F ( ,)

Z= (1+(1 RR)PT(P*)

K,=-B'P(I-R'R)Z, K, =(I-R'R)Z,

then the set of solutions §,, was expressed as
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5, = {[X,Y]

X - K, K,
vee(X) _y| B -RRG vec(E)+H| Py
vec(Y) G Ky Ky

where y is an arbitrary vector with the proper dimension.
However, the huge computation cannot be easy to realize in the
large scale system which motivates us to find an operable
iterative method.

A matrix pair [x,y] is referred to a minimum norm solution

if it minimizes
X1+ ©)
and a like-minimum norm solution if it minimizes

it (X +rit ()

F°

“4)

where tril (X ) is denoted as lower triangular part of X, that is

x, 0 - 0
X X 0
wil(x)=| "
X X X

n2 nn

II. PRELIMINARIES
To study the problem (2), we begin with the following
lemma and the classical Algorithm LSQR presented for solving
least-squares problem [3].
Lemma 1. Let X e S4R™, then vec (X )= Hvec, (X ), where

e 6 & €. € 0 0 - 0
0 ¢ O 0 0 ¢ O 0 0
0 0 ¢ 0 0 ¢ 0
H, = : e
0 0 g 0 0 O e, 0
0 0 0 ¢ 0 O 0 e
H, c R and e =(0,-,0,10-0).
AR e
i1 n-i

First, let us review the Algorithm LSQOR for solving the
least-squares problem:

min|[Me- /], )
PER
with given M e R™" and vector feR” , whose normal
equation is
M Mp=M"f. (6)
The algorithm is summarized as follows.

Algorithm LSQR
(1) Initialization

Bu, = fav, :Mruﬂhl =V
Xo :Oaéjl =B.p=a;
(2) Iteration. For ;j=1,2-.-
(i) bidiagonalization
@) B, =Mv, —au,,
®) o, = MT“M =B
(ii) construct and use Givens rotation:
P =+ ﬁiE + i2+l >
G =01 P8 = By | POy = 5,0,
Pist =056, = Ciéj: ’éjm = Sii;
(iii) update x an 4
@ =0.,+(S 1 p)h
By =V _('9,+1 /p,)h,§
(iv) Check convergence.

We can choose
HMT (f_ka )Hz =‘ak+]5k+lck‘ <t )

as convergence criteria, where 7 >0 is a small tolerance. Note
that if (5) has a solution pe R(M"M)e R(M"), then ¢ which is
generated by Algorithm LSQR is the minimum norm solution of
(5). Then we can have the symmetric arrowhead matrix
solution generated by Algorithm LSQR which is the
like-minimum norm and minimum norm solution of (2).

III. THE MATRIX-FORM ALGORITHM LSOR FOR (2)

A. An Iterative Method for the Like-Minimum Norm Solution
of (2)

In this section, we will give some results of this paper and
propose iterative methods based on Algorithm LSQR.
Theorem 1. Let xeS4r™ , and vec(X)= Hvec,(X) , then
H'HH'=H".

Proof: It follows Lemma 1,

el 0 0 0
el e 0 0
: : e e e, e 0
e, 0 e 010 e 0 0 e 0
H'H=|e' 0 0 e |
0 e 0 00 0 ¢ 0 0 e,
: P00 - 0 ¢ 0 -+ 0
0 e, 0
0 0 0 ¢
1
— 21”71 e R(anl)x(anl) ,
I

We can obtain matrix H is full column rank, with

(H'HE'Y =(HH') (H") =HH'H=H.o
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Theorem 2. Let U € R™ and P=A"UB", Q=(P+PT). Then
2

for the symmetric arrowhead constrained matrix H, we have

((B7 @A) 1) vec(U) = (H"H)vee,(£,0+(E, Q) +diag(0)-2E, OF, )

where E, =¢e .
Proof. Notice that

(5"® A)H)T vec(U)=H" (B® A" vec(U) = H'vec(4"UB")
=(H"H)H'vec(4"UB" ) =(H"H)H'vec(P).

From Theorem 1, for any P € R™", we have

HTVQC(P) =(HTH)_1 H' (pll"."pnl’plz"“’per’ "'spln""spmx)T

-1
=(HTH) (pII’pIZ + D15 D3t Pyt Dy +pn|=p221p33""’pmz)r

that is

T
HTvec(P) :H*vec(PT) = H*vec[P-FP }

It is easy to obtain that

r

H*vec(P+ P J = H*vec(E“QJr(EHQ)T +diag(Q)72EHQE”)

= vec,(E,0+(E, 0)' +diag(0Q)-2E, 0F,,).
From all above, we can have
(8 ®A)H)T vec(U) = (H" H)vec, (E,Q+(E, 0)' +diag(0)~2E,0F, ). o

Since
vec (X) ’

)J—vec(E)

|4xB+cYD-E| =

the symmetric arrowhead constrained problem is equivalent to
(5) and

(B"®4,D" ®c)[

vec(Y -
vec, (X ) ’

(8" ®@4)H,,(D" ®c)Hz)(mj’ (Y)j—vec(E)

5

F

M=((B" ®4)H,,(D" ®C)H,)e R, ®)
ms vec; (X) 2n42k-2
f=vec(E)eR™,p= e R, ©
vec, (Y)

where H, and H, are the symmetric arrowhead constrained

matrices of degree n and £, respectively. Therefore, the normal
equation of (2) is

M Mp=M"f=M"vec(E).

Now, we will apply Algorithm LSQOR to (2) and the iterative
vector will be transformed into matrix so that Kronecker
product and constrained matrix A can be released. Then the
vector 1 and v will be expressed by matrix U and V respectively
so as to transform the matrix-vector product of Mv and M'u to
the matrix-matrix form.

Let 4 :vec(U)eR’"" with Uer™ , v:[vljeRz”*M’z , where
V.

2

v, = ve, (V) and v, = vec, (Vz) Wlth Vl e SAR™" N V2 S SARka .

1

Denoted by
W= E|1Q+(E||Q)T +diag(Q)—2E”QE” ’
and according to Theorem 2, we have

mat(MTvec(u)) = mat(HTHvec,. (E”QJr(E”Q)r +diag(Q)72E“QEH))

1

= mat 21, vec, (W) |=2W —diag (W).
I,
Then
r H/ (B® A )vec(U H!H Hvec(P
mat(M’u):mat 'T( T)vec( ) =mat| ! l_‘_vet( D
H, (D®C )vec(U) H, H,H vec(P,)

:ma{HITHlveci(Wl)]:[ZWl—diagg , }

H] H,vec, (WZ) 2W, —diag (W, 2

mat(Mv):mat(((BT®A)H1,(DT C)H )( D
=mat((B" ® 4) Hyvec,(V;)+(D" ® C) Hvec, (1))
:mat((BT®A)vec(Vl)+(DT®C)vec(V2))

= AV,B+CV,D,

where v, and v, can be formally transformed to symmetric

matrices:

v, = 2, ~diag (W)
V, =2W, —diag (W,).

Next, we will give the algorithm for the like-minimum norm
solution of (2).
Algorithm LSQR-W.1
(1) Initialization
X, =0(eS4R™"), ¥, =0(e SAR™"),

E
LU =—,
A
PV =A"UB", B =C'U,D",
o BB o B
1 2 k4 (. 2 >
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0= EllQl(l) +(E11Q1(I) )T + diag(Ql(l) ) - 2E11Q1(I)E11’
Wlm = 11Q1(2) +(E11Q1( ) +dlag(Q ) 2Ean 11>
,dl'ag(w/l(‘)),
= ZW(2> —diag(W(z)),

70 = o)

2
lell ‘trtl : ) ,
F
[7(2)
K( :17, K(Z) S
a a
Zl(l) — Vl(l)’ 21(2) — V](Z),
9?1 =p. p=a.

(2) Iteration. For i =1,2,---
(i) Compute U,

U, =4vVB+cv'D-aU,
r 7 UL+
ﬂm =‘UH»| o U, = o
B
(ii) Compute V..
=AU, B, P =C"U, D",
R
i+1 2 > i+1 2 >
x+l EnQ (E11Q1(+]1) +dltlg(Q ) 2E, Q

W,u E]IQ(2 (EIIQI(fI)) +diag(Q,+| ) 2E,0; Z)E

v =2l ~diag (W)~ 81",

i

I7r(+2|) = 1+1 dlag( ) ﬁmV(
=) 2
Oy = tril(V;El) t”l( i+l ) >
F
7 7
Vts»‘l)z “’Vi(fl): =,
41 i1

(iii) Compute Givens rotation:

plz\/p + L+l’

pi ﬂiﬂ
G=—"H 5= > 91+] =80
Pi Pi
Pt =05 & =65, §y =56,

(iv) Update X, ¥, and Z;:

X, =X, +(&/p) 2",

(§/p,) @,
Zfl’l— v (9//9,)2,“),
78 =v-(6/p) 2.

(3) Check convergence.

Algorithm LSQR-W.1 can compute the like-minimum norm

solution o=| " (X)) of (5). So we have the following result.
vec, (Y)

Theorem 3. The symmetric arrowhead solution generated by

Algorithm LSQR-W.1 is the like-minimum norm solution of

Q).

B. An Iterative Method for the Minimum Norm Solution of
)

In Section 4, the like-minimum solution generated by
Algorithm LSOR-W.1 is not the best approximation result and
non-unique. In this section, we will give an iterative method for
the minimum norm solution of (2).

For X e R™ , define vec, (X)=Svec,(X), and add the

>

weight values to elements X that is

2,0mm ntlee 20—

V2/2

V2/2

2/2

with § e R®"™ ") Obviously, there is one to one linear
mapping from e (X) to vec(X) . Let H denote the

minimum norm constrained matrix with
vec(X) = Hvec, (X).

It readily follows form Theorem 1 that

Theorem 4. Suppose H is the symmetric arrowhead
constrained matrix, then

H = HS™

and
TH=2]

2n-1°

Since

2

5

|4xB+CYD-E[. =

(8" ®4)i1,.(p" ©C) i )(Vec (X)J—vec(E)

vec, (Y)

F

problem (2) is equivalent to (5) and

M =((B" ®4)H,,(D" ®C)H,)e R™ "2,

t(X)J = R2n+2k72,

¢ (X)

m m

f=vec(E)e R™,x —[

where H, and H,
constrained matrices of degree n and &, respectively.

are the new symmetric arrowhead

v,
For any =( l] e R,y =vec, (¥;) and v, =vec, (V,) where
v

2

V. e SAR™", V, € SAR™" | we have

V= V+(\/§*l)diag(V),

and

433



International Journal of Engineering, Mathematical and Physical Sciences
ISSN: 2517-9934
Vol:9, No:7, 2015

mat(MV) = mat((BT ® A)FIIVeCi (Vl)+(DT ®C)I-72vecl. (1/2)) (i) Compute U,,,
:mat((BT®A)HS vee, (V;)+ (DT@C)HzSz_IVEC,(VZ)) PO =V,-(l)+(\/5—l)diag(l/i(')),
= mat((BT ®A)H vec, ( ) ( r ®C)H2vecl. (Vz)) 7oy +(\E—l)diag(V(2))
:mat( B ®A vec([%) ( T®C)vec( )) U, = Aj/,])B'FCV(zD aU,
ﬂm =Yl U, = :+I/ﬂi+]’
= AV,B+CV,D,
(ii) Compute V,,:
For any u = vec(U)e R™ with U € R™", denoted by P =4'U,B", B} =C"U,,D",
(')_P,I)Jr (+ (2)_1’,(H+P
W =E,0+(E,Q) +diag(Q)-2E,QE,) , = G =T

,+1 E11Q (EHQl ) +dlag(Q ) ZEIIQ:HEII’
,+1 EIIQI (EIlQi(+1) +d’ag(Q ) 2EnQ 1>

according to Theorem 2, we have

H] (B® A" yvec(U H H H;vec(P,
mat(MTu) = mat T( Jvee(U) = mat *17 — 7*vec( ) V() (2 */7) dlag( i+l ) ﬂmV
H, (D®C"yvec(U) H, H,H,vec(P))
21,SHvec(W) 28vec, (W) =2l (2 \/E)dzag( fat ) BV
= mat . mat 28 w, — >
21SH. vec(W) vee, (17, :\}Hml V, 0 Htrll i1 ) )
F
2- dlag —
( ) ") , U 7 y® :ﬁ
ZVVZ (2 z)dlag ) a ai+l ’ ! ai+1 ’
(iii) Compute Givens rotation:
where v, and v, can be formally transformed to symmetric P =P+ B
matrices c :E, 5, :ﬁ’ 0. =sa.,
P; ;
v, =2W, —(Z—ﬁ)diag(Wl)y P ==, § =66, &y =58,
iv) Update X., Y and Z.:
V, =20, -(2-2)diag (W) (iv) Update X, % and Z,
=X+ (gi/pi )Zi(l)7
Next, we give the algorithm for the minimum norm solution yvi=va+(&/p )Zf Y,
of (2). X, =x‘.+(ﬁ—1)diag(xi),
Algorithm LSQR-W.2
(l)Initialization Y=y, +(~/E —l)diag( )-
nxn kxk
—O(e SAR™"), Y, =0(e SAR™), 70 =1 —~(6,/p,) 2",
_E
— Zi(fl) = x+l (a/p,)zxz-
) ﬁ (3) Check convergence.
Pl(l) _ A7UIBI , Pl -Cr UIDT,
0 pO 4 pr’ " po 4 pyf From above translation process and the algorithm, we can
_ 1 1 _ . . . .
YL e obtain the approximate solution [ X, Y, | with

W =£,0" +(E,0") +diag(0]")-2E,0E,.
= 5,07 +(£,0”) +diag(0®)-2E,0”E,.
70 =2 _(2 —\/E)diag(Wl(”), Thus, we have
7o) — o) —(Z—x/i)diag(Wl(z)), X, =x +(\/§—1)diag(x,),
- Y,:y‘+(\/5—l)diag(yi).
-t

vec, (x,) =vec, (X,), vec, (v,) = vee, (K)

> i

s
r

" 70 Lo 7o Because of
=1 = 2 2 _ 2 = 2
e T el + 1 =2 () + e, (1)),
- VI(I)7 Zl(z) - V|(2)’
E-B.p-a: The Algorithm LSQR-W.2 can compute the minimum norm
1> M1 12

(2) Iteration, For i =1,2 solution of (5). So we have the following result.
eration. For i =1,2,---
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Theorem 5. The symmetric arrowhead solution generated by
Algorithm LSQR-W.2 is the minimum norm solution of (2).

IV. NUMERICAL EXAMPLES

In this section, we reported three numerical examples to
illustrate the efficiency of the algorithms we proposed. First, we
present the Example 1 in [7] with the results generated by
Algorithm LSQR-W.1 and Algorithm LSOR-W.2.

Example 1. Considering the following matrix equation
AXB+CYD=FE with4=B=C=D=], and

—_ = = =
(=
S = O =
—_ o O =

1,XI,+1,YI, =E,

where I, is the unit matrix of order 4. We can also obtain the

minimum solution by Algorithm LSQR-W.I and Algorithm
LSQOR-W.2 which should be

05 05 0.5 05 05 05 05 05

05 05 0 0 05 05 0 0
X= Y =

05 0 05 0 05 0 05 0

05 0 0 05 05 0 0 05

The exact result could be computed by our methods in no more
than two iterations. Fig. 1 plots the relation between error

7, =log10(]| 4%, B+CY,D-E],)

and iterative number K. Next we present two other matrix
equations which show the methods numerically reliable in
various circumstances.

Example 2. Given

B hilb(5) zeros(5,3) 3 ones(3,7) zeros(3,5)
_{eye(S) 0nes(5,3)}’ _Leros(Sﬂ) pascal(S):|’
Co { magic(6)} Do {hankel(l :4)  zeros(4, 8):|
ones(4,6) |’ zeros(2,4)  ones(2,8) |’

Xzones(S,S), Yzones((),()) and £ = AXB+CYD.

Notice that problem (1) is consistent and has a symmetric
arrowhead solution. For M and ¢ defined by (8) and (9), we can
choose residual error

|4x,8+CY,DE|, =i, - 7], = ..

From (3) and (4), we can compute by Algorithm LSQOR-W.1
and

Ty + v =38,

wil (X, + itV = 26,

Xl + ¥l = 38.9580, it (X ). +|erit (¥ | = 25.5309.

Thus, we can obtain the like-minimum norm solution of (2) and
Fig. 2 plots the relation between error

& =logl0(|4X,B+CY,D-E], )
and iterative number K which shows the favorable efficiency of
Algorithm LSQR-W.1. Next, we also compute the result by
Algorithm LSQR-W.2 and obtain that

[l + 25 [ = 38.Jerit (X +Jerit () = 26.

Thus, we obtain the minimum norm solution of (2) and Fig. 3
plots the relation between error

1, =log10(| 4%, B+CY,D-E|,)

and iterative number K of the Algorithm LSQOR-W.2.
Example 3. Given

hilb(5) zeros(5,3) ones(3,7) zeros(3,5)
- { eye(5) ones(5,3) }’ - Leros(S, 7) pascal(5) } ’
Co {magic(6):| D |:hankel(1 :4)  zeros(4, 8):|
ones(4,6) |’ zeros(2,4)  ones(2,8) |

E= [toeplitz(l :10) ones(10, 2)] .

Notice that the problem (1) is not consistent. For M and ¢
defined by (8) and (9), we choose residual error

|p7 M, M7 1], =] & -
Then Figs. 4 and 5 plot the relation between error
1.6, :1og10(HMT (M, 7f)Hz)

and iterative number K by Algorithm LSQR-W.1 and Algorithm
LSQOR-W.2, respectively.

Tk

Fig. 1 The relation between error y, and iterative number K
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Fig. 4 The relation between error 77, and iterative number K

(1
(2]
[3]
(4]

(3]

(6]

(7]

(8]

Fig. 5 The relation between error &, and iterative number K
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