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Abstract—In this paper, a learning algorithm using neuronal
networks to improve the roll stability and prevent the rollover in a
single unit heavy vehicle is proposed.

First, LQR control to keep balanced normalized rollovers, between
front and rear axles, below the unity, then a data collected from this
controller is used as a training basis of a neuronal regulator. The
ANN controller is thereafter applied for the nonlinear side force
model, and gives satisfactory results than the LQR one.
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nonlinear side force.

I. INTRODUCTION

HE lateral stability loss is one of the main causes of traffic

accidents in which heavy vehicles are involved. This can
cause mainly a rollover, which is crucial and fatal when the
tire-road contact force on one of the side wheels becomes
zZero.

At moderate levels of lateral acceleration, the heavy
vehicles can lose roll stability, which means the ability of a
vehicle to resist overturning moments generated during
cornering, because of their relatively high centers of mass and
narrow track widths.

In the literature, several active roll control strategies have
been proposed in order to improve vehicle handling response
and roll stability. The famous one is active anti-roll bars; these
bars consist of a pair of hydraulic actuators which generate the
adequate roll moment between the sprung and unsprung mass
at each axle to balance the overturning moment [1].

Sampson in [3] defines an active roll control based on LQR
(Linear Quadratic Regulator) approach to improve the roll and
handling stability, this procedure has been used in this paper,
but in our case, the best results of the LQR controller are
exploited as a training data for the neuronal network.

The inputs and the number of the neurons in the hidden
layer are selected after several trials and it is those which give
the best performance in the phase of training.

II. THE SINGLE UNIT HEAVY VEHICLE MODEL

Fig. 1 shows the five-degree-of-freedom vehicle model used
in this research. It represents a single unit heavy and it is
modeled using three rigid bodies: the sprung mass and the two
unsprung masses, one each for the front and rear axles [1], [2].
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The vehicle as a whole can translate longitudinally, laterally
and can yaw. The sprung mass can rotate about the roll axis
fixed in the unsprung masses. The unsprung masses can also
rotate in roll, enabling the effect of the vertical compliance of
the tires on the roll performance to be included in the model.
The motion is described using a coordinate system (x, y, z)
fixed in the vehicle [2].
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Fig. 1 Coordinate system for a single unit heavy vehicle

In this model, the forward speed of the vehicle is assumed
to be constant during the lateral maneuvers (U =80 Km/h).

The roll stiffness and damping of the vehicle suspension
systems are also assumed to be constant for the range of roll
motions considered [3].
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The equations of motion for the SDOF vehicle model are:
mv(B +§) — mghd = Fyp + F,, (1)
—Ley® + LY = Fyply — Eyply + L,AF, )
(Lix + Mgh)§ = L, = moghep + mevh(B +) = ke (9 —
Ger) = be(d — brp) +up — k(b — b)) = br(d — D) +ur (3)
—hyFyp = mypv(r = hye) (B + ) + Mupghu ey — kepbes +

ke(¢ = des) +b(d— dr) +up(4)

_hrFyr = murV(r — hur)(ﬁ + 1,0) - murghu,r.qbt_r — kt,r¢t,r +
kr(¢ = ber) + by($ — ) +ur (5)

We consider first that the lateral tire forces in the direction
of the wheel ground contact are approximated linearly to the
tire slide slip angles, respectively:

Fyp = uCyay ()
Fyr = uCa, (7)

and the tire side slip angles are approximated as:

ap = —p+6 - ®)

v

4 =—p+= ©)
The state vector is the following: x = [8 ¥ ¢ ¢ ¢, qbt,T]T
The main input of the system is the steering angle. The
steering angle applied in the simulation is a double lane
change manoeuver (0-7s) followed by a step steering (10-20s),
which is filtered at 4 rad/s to represent the finite bandwidth of
the driver. Fig. 2 shows this input:

Fig. 2 Steering angle

III. CONTROL OBJECTIVES

The main objective of the proposed controller is to
maximize the roll stability of the vehicle in both, linear and
nonlinear, side force model. The roll stability is achieved by

limiting the lateral load transfers to below the levels for wheel
lift-off.

First, we use the LQR active roll control, as described in
[2], its objective is set the normalized load transfers at the
steer and drive axles to be equal and below =1, and to tilt the
vehicle inwards to the maximum angle allowed by the
suspensions (the relative roll angle of the suspension must be
within 7°). Then, the collected data from the LQR controller
are used for the training basis of the ANN controller.

We consider first the problem of optimal regulation in the
presence of a constant deterministic disturbance r(t), and
consider a strictly proper linear dynamic system:

X =Ax+Byu+B,r, z=0Cx

Then, the problem is to find the control minimizing the

index J such as:

J= f w(ZTQZ +uTRu) dt
0

where: ¢; =[000010;0000 01]; and the matrices Q and R
are the relative weighting of the performance output trajectory
z and the control input u respectively, their values, based on
trial and error, are:

Q = [1000 0; 0 1685]; R = 10~°.[0.3830 0; 0 0.2590].

The optimal control law is provided by a feedback
controller K; plus a feed-forward controller K, [4]:

u(t) = Kyx(t) + K,r(t)

where
K, = —R™B!S, K, = R™'BI (AT — SB,R™'BI)~1SB,

and S satisfies the Riccati equation:
SAT + ATS — SByR™IBIS + €TQC, = 0

Therefore:

S =121.2332-2.0901 -4.6467 -1.8981 1.3984 2.0605;
-2.0901 0.4337 0.0124 0.1088 -0.6861 -0.1485;
-4.6467 0.0124 3.5798 0.6636 0.2066 0.6474;
-1.8981 0.1088 0.6636 0.2040 -0.0187 -0.2172;

1.3984 -0.6861 0.2066 -0.0187 18.6364 0.1172;
2.0605 -0.1485 0.6474 -0.2172 0.1172 19.4957]

IV. CONTROL BASED NEURONAL NETWORK

Artificial neural networks use a dense interconnection of
computing nodes to approximate nonlinear functions. Each
node constitutes a neuron and performs the multiplication of
its input signals by constant weights, sums up the results and
maps the sum to a nonlinear activation function; the result is
then transferred to its output. A feed-forward ANN is
organized in layers: an input layer, one or more hidden layers
and an output layer [5].

The ANN is trained by a learning algorithm which performs
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the adaptation of weights of the network iteratively until the
error between target vectors and the output of the ANN is less
than an error goal. The most popular learning algorithm for
multilayer networks is the back-propagation algorithm and its
variants. The latter is implemented by many ANN software
packages such as the neural network toolbox from MATLAB
[6]. The Sampling period of the simulation is 0.0002s.

Input layer Hidden layer Output layer

Fig. 3 Structure of the neural network architecture

Neural network, in Fig. 3, has been devised having as inputs

the roll angle of the unsprung masses (¢;s, ), the mean of
the rollovers (Rm = @), and the change of the mean (‘%”).
And the roll angle of sprung mass (¢). And as outputs the

front and rear anti-roll moments (Uy, U,.).

A. With Constant Adhesion Coefficient

Fig. 4 shows front and rear normalized rollovers for the
linear side force model with constant adhesion coefficient

Front and rear normalised rollovers-linear side force model-

[—

| —— Rf - ANN control

Rr - ANN control

L J

Fig. 4 Front and rear normalized rollovers with ANN controller

The front and rear normalized rollovers for the passive
suspension, the active suspension with LQR, and with ANN
are shown in Figs. 5 and 6 respectively:

Front normalised rollovers - Linear side force model-

ANN control

Fig. 5 Front normalized rollovers

Rear normalised rollovers -Linear side force model-

SUSpension
ntrol
ANN control

Fig. 6 Rear normalized rollovers

The moments generated by the front and rear anti-roll bars
are shown in Fig. 7.

Anti-roll bars moments - Linear side force model-

Fig. 7 Moments generated by the Anti-Roll Bars

The side slip angle S for the three cases: Passive, LQR,
ANN are shown in Fig. 8.
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Side slip angle - Linear side force model -
spension |

L ol

ANN control

Fig. 8 Side slip angle

In this part of simulation, one can note that the neural
network is successfully converged, since the LQR and the
ANN controllers give the same results, for the rollovers and
the side slip angle. In addition, the front and rear rollovers are
balanced within the tolerated values.

The side slip angle for the three cases are the same, since
the controllers work with the roll states and not with the yaw
ones.

B. With Variable Adhesion (Friction) Coefficient

Here, we consider that the adhesion coefficient u is varied
to simulate the terrain variation. Fig. 9 shows this variation.

Fig. 9 Variation of adhesion coefficient

The LQR matrices must be changed and adapted with the
variation of adhesion coefficient, and the new values of the
gains Ky, K, become:

For: u = 0.6 - K, = [—9.5730.10%; —5.1859. 10%]

K, = 10°.[1.7811 0.0024 — 1.1576 — 0.3197
—4.9145 0.1387; 2.4802 — 0.1324 — 1.8974
—0.3999 — 0.1318 — 7.2983]
For: u=08-K, = [-1.260610%; —0.7100105]
K, = 105. [2.2989 — 0.0077 — 1.1677 — 0.3248
—4.8960 0.1383; 3.1935 — 0.1846 — 1.9047
—0.4055 — 0.0967 — 7.2876]

Figs. 10 and 11 show the normalized rollovers for the three

cases: passive, LQR, ANN:

Front normalised rollovers- Vanation of friction coefficient-

suspension

Fig. 10 Front normalized rollovers

Rear normalised rollovers- Vanation of fnction coefficient-

QR control
ANN control

Fig. 11 Rear normalized rollovers
Fig. 12 shows the moments generated by the anti-roll bars.

Anti-roll bars moments - Vanation of fnction coeficient-

Fig. 12 Moments generated by the anti-roll bars

We can note that the LQR controller and the ANN
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controller give the same satisfactory results, and the rollovers
are within the allowed values. However, the LQR controller
requires a parameter adaptation.

C.With Nonlinear Side Force Model (Kiencke and Nielson
Model):

In this simulation, we consider that the lateral force is
described by the Kiencke model [7]:

Front normalised rollovers - Wet asphait Kiencke model-

Passwve suspension
LQR control
ANN control

Fig. 13 Front normalized rollovers

Rear normalised rollovers - wet asphalt Kiencke model-

ANN control

Fig. 14 Rear normalized rollovers

Anti-roll bars moments - Wet asphalt Kiencke model-

Fig. 15 Moments generated by the anti-roll bars

Dynamic normal load on th front outside tires

Fig. 17 Normal load on the rear outside tires in a cornering

The process is simulated for a “wet asphalt”, and it remains
valid for any other ground. The results show the advantage
brought by the ANN controller compared to the LQR, it’s
obviously noted, the LTR are always located in the range [-0.5
0.5] for the ANN controller, however the LQR controller loses
its performance, and the LTR’s have maximums close to their
critical values 0.9.

V.CONCLUSION

The two controllers, LQR and ANN, are successfully
applied to control the semi-active suspension of the single unit
heavy vehicle with the use of anti-roll bars mechanism. These
controllers give similar performance, for constant and variable
friction coefficient; however, the LQR controller requires gain
adaptation. The ANN controller is very advantageous in the
nonlinear side force case.

By observing the normal forces supported by the outside
tires in a cornering, one can conclude that the ANN can reduce
successively and considerably these loads, and thus, to
preserve usefully the rubber of the wheels and to protect the
environment.
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