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Predicting Residence Time of Pollutants in Transient
Storage Zones of Rivers by Genetic Programming
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Abstract—Rivers have transient storage or dead zones where
injected pollutants or solutes are entrapped for considerable period of
time, known as residence time, before being released into the main
flowing zones of rivers. In this study, a new empirical expression for
residence time, implementing genetic programming on published
dispersion data, has been derived. The proposed expression uses few
hydraulic and geometric characteristics of rivers which are normally
known to the authorities. When compared with some reported
expressions, based on various statistical indices, it can be concluded
that the proposed expression predicts the residence time of pollutants
in natural rivers more accurately.
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[. INTRODUCTION

OLLUTANT transport in rivers is largely influenced by

surface hydrodynamics and mass exchanges between the
river’s main flowing zones and transient storage zones.
Transient storage zones, also called retention or dead zones
are formed by irregular bed forms, pools and riffles, and
interstitial sediment voids within the river beds. Some parts of
accidental spills of pollutant get entrapped in these retention
domains for considerable period of time before being released
to the free flowing river zone, thus reducing the effective
advection velocity in the longitudinal direction of the stream.
Sorbing solutes experience longer residence time than
nonsorbing solutes. Knowledge of dispersion is important to
hydraulic and environmental engineers for ascertaining quality
of river water, managing water resources schemes and water
rights, and designing outfalls. Although, the importance of
transient storage zones in pollutant dispersion is well
recognized, however, relatively few studies have quantified
the residence time of pollutants in these zone. The transient
storage zone model (TSM) is reported to be a better approach
to include the effect of transient storage in longitudinal solute
transport in rivers than the classical first order advection-
dispersion model [1]. TSM incorporates following two mass
conservation equations, one for the solute concentration
dissipation in the free-flowing water zone and another in the
transient storage zone
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where Cr is the pollutant concentration in the free flowing
water zone; C, is the transient storage zone solute
concentration; t is the time elapsed since injection of the
solute/pollutant; x is the longitudinal distance from the place
of injection of the pollutant to the investigation site; Uy is the
mean flow velocity in the free flowing water zone; Ky is the
longitudinal dispersion coefficient in the free-flowing water
zone; € is ratio of cross-sectional area of the transient storage
to the total cross-sectional area of the channel and T is the
residence time of the tracer in the transient storage zone.

Appropriate values of TSM parameters i.e., U, K¢, T and ¢,
are required for model’s successful implementation. These
parameters can best be estimated using tracer concentration
profile taken from a particular reach of the stream, but such
tracer investigation is expensive and rarely done for every
reach of a stream. For this reason, many investigators have
derived empirical expressions for estimation of these
parameters. However, the present study by the author shows
the reported expressions for the residence time to be
inadequate with large deviations between measured and
predicted values.

Reference [2], after fitting experimental dispersion data
compiled by [3] on the solution of [4], derived the following
simple expression for residence time T of solutes in transient
storage zones of rivers as

5fwW? (3)
HU.

where f is the Darcy-Weisbach friction factor, W is the stream
width, H is the mean flow depth and U~ is the shear velocity.
Reference [5], employing the weighted one-step Huber
nonlinear multi-regression method on published field data,
derived the following expression in non-dimensional format as

0767 ~0.884 4
T =56.68 (ﬂ v ( )
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Reference [6] developed robust minimum covariance
determinant method and applied it on hydraulic and geometric
information available for natural rivers to derive the following
empirical expression for prediction of residence time T and
showed its superiority over other reported expressions of the
time
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where P, is the Peclet Number and S; is the channel sinuosity.
Reference [7] satisfactorily estimated parameters of the
transient storage model using neural networks, however, direct
expressions are handy and more suitable for predicting these
parameters.

II. DERIVATION OF NEW EXPRESSION FOR T BY GENETIC
PROGRAMMING

The Performance of the above-mentioned expressions, as
would be shown later in this article, is far from satisfactory.
The claim of [5] and [6] about accuracy of their expressions
are found to be rather misplaced. In the present work, an
alternative  expression for the residence time of
solute/pollutant in dead zones of rivers is advanced. This has
been done implementing genetic programming on the
published dispersion data of USA Rivers [Table I].
Comparable datasets were chosen for deriving and verifying
the new expressions to avoid any bias in modeling. There are
two reasons for selecting this data: (1) it represents a wide
range of geometric and flow characteristics of streams and (2)
it had earlier been used by [5] and [6]. Thus, results from the
proposed and other reported expressions could be compared
well.

A. Genetic Programming

Genetic Programming invented by [8] and further
developed by [9], is a biologically inspired machine learning
method that evolves computer programs to perform a task. It
does this by randomly generating a population of computer
programs (represented by tree structures) and then mutating
and crossing over the best performing trees to create a new
population. This process is iterated until the population
contains programs that solve the task well [10]. Though GP
does not use chromosomes, it works on the principle of
genetic algorithm (GA) as both employ populations of
individuals, select them according to fitness values and
introduce variation in population for next generation using
genetic operators. The only important difference between GP
and GA lie in the nature of individuals and in the way they are
reproduced to allow adaptation. A basic flow-chart for the GP
system is given in Fig. 1.

Generake & run

GP system p Fandom programs Output hest

Predict on validation

Fig. 1 Working structure of GP

In the present work, GPTIPS ([10]), an open source GP
program was applied on published dispersion data (Table I)
with the following settings: population size = 300, number of

generation = 250, tournament size = 4, elitism = 0.02% of
population, maximum depth of tree = 3, maximum number of
genes allowed in an individual tree = 4 (W/H, U/Usx, P, and S;)
and function node set = {plus, minus, times, tanh}. The above
setting was used to minimize the root mean square prediction
error on the derivation datasets. The model that performed the
best on the verification datasets was chosen. Accordingly, the
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The above expression appears to have successfully been
derived, with coefficient of correlation between measured and
predicted values being equal to 0.89. The expression

successfully predicted the highest and the lowest # values of

2235.4 and 16.7 respectively as 2104.2 and 17.2 respectively,
and most of the predicted values are evenly distributed about
the ideal line, showing no bias for over or under prediction

(Fig. 2).
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Fig. 2 Measured and predicted dimensionless residence time
(derivation dataset)

III. VERIFICATION OF THE NEW EXPRESSION

The comparison of the new and other reported expressions
for residence time was accomplished using 20 measured
datasets of Table I that were not used for deriving the new
expression. The comparison models used here are [2], [5] and
[6]. For brevity, these comparison models are denoted as
Pedersen, C-S, and C-Y-S, respectively. The performance
indices used for comparison of the models are coefficient of
correlation (CC), root mean square error (RMSE), discrepancy
ratio (DR) and accuracy. They are defined as
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Accuracy = 1 (accurate, if DR lies between -0.3 to 0.3), (10)
otherwise 0.

where T and T are predicted and measured
H/U. ) H/U. ),

dimensionless residence time parameters, respectively and S,
S are standard deviations of predicted and measured values,
respectively.

Fig. 3 shows comparison of the predicted values and the
measured values for the verification datasets. As can be
observed from this figure, the maximum number of predicted
values by the new expression is closer to the measured values.
The highest 3 values of the parameter of 2066.9, 1734.4 and
1269.2 are successfully predicted as 2024.3, 1357.5 and 766.6
whereas; deviations are larger in case of other expressions.
Table II summarizes performance indices of the models for the

verification data. Prediction of parameter [ T j by the

H/U.

newly derived expression is more realistic in comparison to all
other models, the predictions’ RMSE being the smallest and
CC, the largest. The performance of Pedersen model is seen to
be the least satisfactory.
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Fig. 3 Measured and predicted dimensionless residence time
(verification dataset)

If accuracy of a model can be defined as the percentage of
predicted values lying between 50% and 200% of the measured
values, i.e., discrepancy ratios falling between -0.3 and 0.3,
then it can be observed from Table II that the proposed
expression has 55 % accuracy, the highest among the models
compared. Accuracies of C-Y-S, Pedersen and C-S models are
5%, 35%, and 15% respectively (Fig. 4).
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Fig. 4 Comparison of discrepancy ratios of models (verification
dataset)

IV. CONCLUSION

A pollutant’s dispersion in rivers is greatly influenced by the
presence of transient storage zones formed largely at the beds
of rivers where it might be retained for considerable period of
time before being released slowly into the main flowing zone of
rivers. The available empirical expressions for estimating the
residence time in transient zones are evaluated and found
inadequate. In the present work, implementing genetic
programming on published field data, a new empirical
expression for residence time of pollutant/solute in transient
storage zone of rivers has been derived. The proposed
expression uses few hydraulic and geometric characteristics of
ariver, i.e., stream width, stream sinuosity, mean flow velocity,
mean flow depth, shear velocity and Peclet number. The
performance of new expression is compared with those of [2],
[5] and [6]. Based on various performance indices, i.e.,
coefficient of correlation, root mean square error, discrepancy
ratio and accuracy, the new expression is found superior to
other considered models.

167



International Journal of Earth, Energy and Environmental Sciences
ISSN: 2517-942X
Vol:9, No:2, 2015

TABLEI
HYDRAULIC DATA OF TRANSIENT STORAGE MODEL OBSERVED AT 55 SITES OF NATURAL STREAMS IN USA [6]

River W(m) H(m) U(m/s) S Pe Si T(s)

Green & Duwamish, WA* 21.77 1.58 0.31 0.00022 0.08 1.39 1032.43
Green & Duwamish, WA 29.61 1.08 0.36 0.00022 2.22 1.39 386.82
Copper creek, VA 16.30 0.50 0.23 0.00134 0.05 1.23 2865.38
Copper creek, VA* 17.12 0.38 0.18 0.00373 0.09 1.23 2761.27
Copper creek, VA 18.23 0.83 0.12 0.00127 0.02 1.23 1086.15
Powel river, TN 34.46 0.84 0.09 0.00037 0.03 1.38 4643.32
Clinch river, VA* 47.62 1.03 0.19 0.00050 0.09 1.73 3264.22
Copper creek, VA 19.81 0.82 0.50 0.00130 0.07 1.23 886.21
Clinch river, VA 53.30 2.08 0.76 0.00061 0.10 1.73 851.482
Coachella canal, CA* 23.90 1.56 0.66 0.00011 0.58 1.04 206.85
Coachella canal, CA* 24.43 1.55 0.67 0.00011 0.58 1.04 355.67
Clinch river, VA 53.30 2.08 0.69 0.00061 0.10 1.73 1842.24
Copper creek, VA 16.00 0.50 0.20 0.00134 0.03 1.23 2865.38
Missouri river 180.80 3.28 1.25 0.00020 0.14 2.00 3265.31
Antiem creek, Md 12.20 0.37 0.21 0.00143 0.32 1.91 8566.31
Antiem creek, Md* 18.90 0.73 0.52 0.00136 0.33 1.91 3404.43
Antiem creek, Md 11.89 0.66 0.43 0.00143 0.56 1.91 1841.87
Antiem creek, Md* 23.09 0.45 0.41 0.00130 0.39 191 7684.56
Monocacy river, MD 48.77 0.55 0.26 0.00050 0.17 1.39 8870.40
Monocacy river, MD 92.96 0.71 0.16 0.00037 0.10 1.39 17524.90
Monocacy river, MD 46.13 0.80 0.32 0.00050 0.26 1.39 8612.81
Monocacy river, MD* 64.08 0.93 0.05 0.00037 0.01 1.39 5235.69
Conococheague creek, MD 46.28 0.52 0.22 0.00052 0.16 2.27 5261.21
Conococheague creek, MD* 40.88 0.43 0.10 0.00065 0.05 2.27 17150.40
Conococheague creek, MD 51.20 0.95 0.68 0.00063 0.38 2.27 3915.62
Chattahoochee river, GA 54.78 1.80 0.74 0.00045 0.50 1.23 18067.20
Chattahoochee river, GA 86.27 2.40 0.30 0.00030 0.17 1.23 9928.67
Salt creek, NE 31.30 0.34 0.18 0.00043 0.15 1.17 7174.30
Difficult Run, VA* 14.58 0.30 0.22 0.00127 0.30 1.38 3650.40
Bear creek, CO* 13.72 0.85 1.29 0.00173 4.36 2.04 1084.32
Little Pincy Creek, MD 15.85 0.22 0.39 0.00130 0.37 1.25 4502.11
Bayou Anacoco, LA* 17.50 0.45 0.23 0.00055 1.05 1.76 16241.60
Comite river, LA* 12.44 0.30 0.25 0.00057 0.26 1.35 2726.12
Tickfau river, LA 21.58 0.68 0.07 0.00093 0.30 1.2 19898.20
Tangipahoe river, LA 32.14 0.96 0.26 0.00051 0.49 1.29 7982.50
Tangipahoe river, LA 29.73 0.55 0.36 0.00058 0.70 1.29 12660.10
Red river* 205.10 3.20 0.31 0.00008 0.40 1.59 14923.20
Red river* 185.50 2.65 0.29 0.00012 0.34 1.59 16826.40
Red river 152.40 3.66 0.45 0.00012 0.30 1.59 18461.80
Red river 200.40 1.75 0.33 0.00008 0.35 1.59 9770.81
Sabin river, LA 68.97 1.27 0.65 0.00016 0.36 1.61 9867.10
Sabin river, LA* 158.40 2.26 0.98 0.00014 0.61 1.61 5434.40
Sabin river, TX 12.90 0.73 0.08 0.00018 0.40 1.52 12210.10
Sabin river, TX 14.88 0.75 0.04 0.00021 0.28 1.52 8482.26
Sabin river, TX* 33.98 1.20 0.13 0.00013 0.50 1.52 12754.90
Mississippi river, LA 735.30 18.10 0.52 0.00001 0.37 1.73 9479.20
Mississippi river, MO 569.80 4.77 0.99 0.00012 0.52 1.38 3312.90
Mississippi river, MO* 587.20 8.47 1.43 0.00012 0.91 1.38 15385.60
Wind/Bighorn river, WY 59.13 1.17 0.75 0.00135 0.70 1.15 9726.43
Wind/Bighorn river, WY* 72.85 2.40 1.58 0.00135 0.58 1.15 4677.66
Colorado river, AZ 106.10 6.10 0.79 0.00013 0.18 1.76 12376.40
Colorado river, AZ 71.60 8.20 1.20 0.00141 0.28 1.76 9385.88
Botna river* 2.05 0.10 0.22 0.00235 0.33 1.12 98.64
Kogilnik river 2.30 0.40 0.56 0.00211 0.05 1.31 262.82
Byk river 2.55 0.14 0.22 0.00084 0.40 1.23 932.21

*. Verification dataset
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TABLE II
PERFORMANCE INDICES OF MODELS

Parameter Model Whole datasets Derivation datasets Verification datasets
CcC RMSE CcC RMSE CcC RMSE cC DR Range Accuracy
(W/H>50 ignored) (%)
T/(H/U+) Present 0.87 253.3 0.89 233.8 0.88 283.7 0.91 -0.22 to 1.36 55
C-S 0.62 668.2 0.56 664.1 0.70 675.4 0.67 -0.26 to -1.60 5
C-Y-S 0.45 509.8 0.59 4723 0.38 569.4 0.46 -0.87 to -0.86 35
Pedersen 0.24 38253.2 0.56 15325.6 0.19 60108.7 0.33 -0.30 to 2.90 15

Pedersen = [2], C-S =[5] and C-Y-S =[6]

[4]

[5]

(6]

(8]

]

[10]
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