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 
Abstract—Rivers have transient storage or dead zones where 

injected pollutants or solutes are entrapped for considerable period of 
time, known as residence time, before being released into the main 
flowing zones of rivers. In this study, a new empirical expression for 
residence time, implementing genetic programming on published 
dispersion data, has been derived. The proposed expression uses few 
hydraulic and geometric characteristics of rivers which are normally 
known to the authorities. When compared with some reported 
expressions, based on various statistical indices, it can be concluded 
that the proposed expression predicts the residence time of pollutants 
in natural rivers more accurately. 
 

Keywords—Parameter estimation, pollutant transport, residence 
time, rivers, transient storage.  

I. INTRODUCTION 

OLLUTANT transport in rivers is largely influenced by 
surface hydrodynamics and mass exchanges between the 

river’s main flowing zones and transient storage zones. 
Transient storage zones, also called retention or dead zones 
are formed by irregular bed forms, pools and riffles, and 
interstitial sediment voids within the river beds. Some parts of 
accidental spills of pollutant get entrapped in these retention 
domains for considerable period of time before being released 
to the free flowing river zone, thus reducing the effective 
advection velocity in the longitudinal direction of the stream. 
Sorbing solutes experience longer residence time than 
nonsorbing solutes. Knowledge of dispersion is important to 
hydraulic and environmental engineers for ascertaining quality 
of river water, managing water resources schemes and water 
rights, and designing outfalls. Although, the importance of 
transient storage zones in pollutant dispersion is well 
recognized, however, relatively few studies have quantified 
the residence time of pollutants in these zone. The transient 
storage zone model (TSM) is reported to be a better approach 
to include the effect of transient storage in longitudinal solute 
transport in rivers than the classical first order advection-
dispersion model [1]. TSM incorporates following two mass 
conservation equations, one for the solute concentration 
dissipation in the free-flowing water zone and another in the 
transient storage zone  
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where Cf is the pollutant concentration in the free flowing 
water zone; Cs is the transient storage zone solute 
concentration; t is the time elapsed since injection of the 
solute/pollutant; x is the longitudinal distance from the place 
of injection of the pollutant to the investigation site; Uf is the 
mean flow velocity in the free flowing water zone; Kf is the 
longitudinal dispersion coefficient in the free-flowing water 
zone; ε is ratio of cross-sectional area of the transient storage 
to the total cross-sectional area of the channel and T is the 
residence time of the tracer in the transient storage zone.  

Appropriate values of TSM parameters i.e., Uf, Kf, T and ε, 
are required for model’s successful implementation. These 
parameters can best be estimated using tracer concentration 
profile taken from a particular reach of the stream, but such 
tracer investigation is expensive and rarely done for every 
reach of a stream. For this reason, many investigators have 
derived empirical expressions for estimation of these 
parameters. However, the present study by the author shows 
the reported expressions for the residence time to be 
inadequate with large deviations between measured and 
predicted values.  

Reference [2], after fitting experimental dispersion data 
compiled by [3] on the solution of [4], derived the following 
simple expression for residence time T of solutes in transient 
storage zones of rivers as 
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where f is the Darcy-Weisbach friction factor, W is the stream 
width, H is the mean flow depth and U* is the shear velocity. 

Reference [5], employing the weighted one-step Huber 
nonlinear multi-regression method on published field data, 
derived the following expression in non-dimensional format as 
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Reference [6] developed robust minimum covariance 

determinant method and applied it on hydraulic and geometric 
information available for natural rivers to derive the following 
empirical expression for prediction of residence time T and 
showed its superiority over other reported expressions of the 
time 
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TABLE I  
HYDRAULIC DATA OF TRANSIENT STORAGE MODEL OBSERVED AT 55 SITES OF NATURAL STREAMS IN USA [6] 

River  W(m)  H(m)  U(m/s)  S Pe Si T(s)  

Green & Duwamish, WA* 21.77 1.58 0.31 0.00022 0.08 1.39 1032.43 

Green & Duwamish, WA 29.61 1.08 0.36 0.00022 2.22 1.39 386.82 

Copper creek, VA 16.30 0.50 0.23 0.00134 0.05 1.23 2865.38 

Copper creek, VA* 17.12 0.38 0.18 0.00373 0.09 1.23 2761.27 

Copper creek, VA 18.23 0.83 0.12 0.00127 0.02 1.23 1086.15 

Powel river, TN 34.46 0.84 0.09 0.00037 0.03 1.38 4643.32 

Clinch river, VA* 47.62 1.03 0.19 0.00050 0.09 1.73 3264.22 

Copper creek, VA 19.81 0.82 0.50 0.00130 0.07 1.23 886.21 

Clinch river, VA 53.30 2.08 0.76 0.00061 0.10 1.73 851.482 

Coachella canal, CA* 23.90 1.56 0.66 0.00011 0.58 1.04 206.85 

Coachella canal, CA* 24.43 1.55 0.67 0.00011 0.58 1.04 355.67 

Clinch river, VA 53.30 2.08 0.69 0.00061 0.10 1.73 1842.24 

Copper creek, VA 16.00 0.50 0.20 0.00134 0.03 1.23 2865.38 

Missouri river 180.80 3.28 1.25 0.00020 0.14 2.00 3265.31 

Antiem creek, Md 12.20 0.37 0.21 0.00143 0.32 1.91 8566.31 

Antiem creek, Md* 18.90 0.73 0.52 0.00136 0.33 1.91 3404.43 

Antiem creek, Md 11.89 0.66 0.43 0.00143 0.56 1.91 1841.87 

Antiem creek, Md* 23.09 0.45 0.41 0.00130 0.39 1.91 7684.56 

Monocacy river, MD 48.77 0.55 0.26 0.00050 0.17 1.39 8870.40 

Monocacy river, MD 92.96 0.71 0.16 0.00037 0.10 1.39 17524.90 

Monocacy river, MD 46.13 0.80 0.32 0.00050 0.26 1.39 8612.81 

Monocacy river, MD* 64.08 0.93 0.05 0.00037 0.01 1.39 5235.69 

Conococheague creek, MD 46.28 0.52 0.22 0.00052 0.16 2.27 5261.21 

Conococheague creek, MD* 40.88 0.43 0.10 0.00065 0.05 2.27 17150.40 

Conococheague creek, MD 51.20 0.95 0.68 0.00063 0.38 2.27 3915.62 

Chattahoochee river, GA 54.78 1.80 0.74 0.00045 0.50 1.23 18067.20 

Chattahoochee river, GA 86.27 2.40 0.30 0.00030 0.17 1.23 9928.67 

Salt creek, NE 31.30 0.34 0.18 0.00043 0.15 1.17 7174.80 

Difficult Run, VA* 14.58 0.30 0.22 0.00127 0.30 1.38 3650.40 

Bear creek, CO* 13.72 0.85 1.29 0.00173 4.36 2.04 1084.32 

Little Pincy Creek, MD 15.85 0.22 0.39 0.00130 0.37 1.25 4502.11 

Bayou Anacoco, LA* 17.50 0.45 0.23 0.00055 1.05 1.76 16241.60 

Comite river, LA* 12.44 0.30 0.25 0.00057 0.26 1.35 2726.12 

Tickfau river, LA 21.58 0.68 0.07 0.00093 0.30 1.2 19898.20 

Tangipahoe river, LA 32.14 0.96 0.26 0.00051 0.49 1.29 7982.50 

Tangipahoe river, LA 29.73 0.55 0.36 0.00058 0.70 1.29 12660.10 

Red river* 205.10 3.20 0.31 0.00008 0.40 1.59 14923.20 

Red river* 185.50 2.65 0.29 0.00012 0.34 1.59 16826.40 

Red river 152.40 3.66 0.45 0.00012 0.30 1.59 18461.80 

Red river 200.40 1.75 0.33 0.00008 0.35 1.59 9770.81 

Sabin river, LA 68.97 1.27 0.65 0.00016 0.36 1.61 9867.10 

Sabin river, LA* 158.40 2.26 0.98 0.00014 0.61 1.61 5434.40 

Sabin river, TX 12.90 0.73 0.08 0.00018 0.40 1.52 12210.10 

Sabin river, TX 14.88 0.75 0.04 0.00021 0.28 1.52 8482.26 

Sabin river, TX* 33.98 1.20 0.13 0.00013 0.50 1.52 12754.90 

Mississippi river, LA 735.30 18.10 0.52 0.00001 0.37 1.73 9479.20 

Mississippi river, MO 569.80 4.77 0.99 0.00012 0.52 1.38 3312.90 

Mississippi river, MO* 587.20 8.47 1.43 0.00012 0.91 1.38 15385.60 

Wind/Bighorn river, WY 59.13 1.17 0.75 0.00135 0.70 1.15 9726.43 

Wind/Bighorn river, WY* 72.85 2.40 1.58 0.00135 0.58 1.15 4677.66 

Colorado river, AZ 106.10 6.10 0.79 0.00013 0.18 1.76 12376.40 

Colorado river, AZ 71.60 8.20 1.20 0.00141 0.28 1.76 9385.88 

Botna river* 2.05 0.10 0.22 0.00235 0.33 1.12 98.64 

Kogilnik river 2.30 0.40 0.56 0.00211 0.05 1.31 262.82 

Byk river 2.55 0.14 0.22 0.00084 0.40 1.23 932.21 

*. Verification dataset 
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TABLE II 
PERFORMANCE INDICES OF MODELS 

Parameter Model Whole datasets Derivation datasets Verification datasets 
  CC RMSE CC RMSE CC RMSE CC 

(W/H>50 ignored) 
DR Range 

 
Accuracy 

(%) 
T/(H/U*) Present 0.87 253.3 0.89 233.8 0.88 283.7 0.91 -0.22 to 1.36 55 

C-S 0.62 668.2 0.56 664.1 0.70 675.4 0.67 -0.26 to -1.60 5 

C-Y-S 0.45 509.8 0.59 472.3 0.38 569.4 0.46 -0.87 to -0.86 35 

Pedersen 0.24 38253.2 0.56 15325.6 0.19 60108.7 0.33 -0.30 to 2.90 15 

Pedersen = [2], C-S = [5] and C-Y-S = [6] 
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