
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2475


Abstract—Common Platform for Automated Programming

(CPAP) is defined in details. Two versions of CPAP are described:
Cloud based (including set of components for classic programming,
and set of components for combined programming); and Knowledge
Based Automated Software Engineering (KBASE) based (including
set of components for automated programming, and set of
components for ontology programming). Four KBASE products
(Module for Automated Programming of Robots, Intelligent Product
Manual, Intelligent Document Display, and Intelligent Form
Generator) are analyzed and CPAP contributions to automated
programming are presented.

Keywords—Automated Programming, Cloud Computing,
Knowledge Based Software Engineering, Service Oriented
Architecture.

I. INTRODUCTION

common technological framework for automated
programming has been defined in [8] based on the

analysis presented in [5] and [8]. The Common platform for
automated programming (CPAP) is built as a combination of
Cloud Computing (CC) principles, Service Oriented
Architectures (SOA), Knowledge Based Automated Software
Engineering (KBASE), and Method for Automated
Programming of robots (MAP).

CPAP is composed of four types of components located in
different CPAP layers. These four types are as follows:
(1) Components for classic programming (CCLP);
(2) Components for combined programming (CCP);
(3) Components for automated programming (CAP);
(4) Components for ontology programming (COP).

All major components in CPAP layers (L3 L6) and
packages (P07-P17) will be summarized following the CPAP
structure presented in [8].

II. CPAP COMPONENTS FOR CLOUD COMPUTING

CPAP technological framework used to work in the cloud
[3], [4] is shown in Fig. 1. Two types of components are
presented - for classic and combined programming.

Components for classic programming allow the realization
of classic programming techniques related to multi tier

This work is supported by the National Scientific Research Fund under the

contract ДФНИ - И02/13.
I. N. Stanev is with the Informatics and Information Technologies

Department, University of Ruse “Angel Kanchev”, Ruse 7000, Bulgaria (tel.:
359-882117345; e-mail: instanev@gmail.com).

M. P. Koleva is with Computer Informatics Department, University of
Sofia “St. Kliment Ohridski”, Sofia 1000, Bulgaria (e-mail:
marie.koleva@gmail.com).

architectures; SOA [4] and CC [2] and are of little interest as
regards programming automation. However, these components
are the minimal body of technical means sine qua none
standard software products would not operate. This group
includes the following components:
 in layer L3: Package P07 - components C1 LDAP / AD

Server, C2 Application Server, C3 RDB Server, C4
Search Engine, C5 eMail Server; in package P08 -
components: C6 Identity Server, C7 Web Server, C8
Process Server, C9 Data Integration Server (case
management);

 in layer L5: Package P10 - components C10 Training
Manager, C11 Help Manager, C12 Payment Manager; in
package P11 - components C13 Issue Manager, C14 Wiki
Manager, C15 Conference Manager, C16 Calendar
Manager; in package P12 – component C17 System
Monitor; in package P13 - components: C18 Register
Manager, C19 Contents Manager; in package P14 -
components C20 Roles Manager, C21 Customer
relationship Manager, C22 Human Resources Manager; in
package P15 - components C23 Service Manager, C24
Business Rules Manager, C25 Codelist Manager; in
package P16 - components C26 Developer graphic user
interface display (GUID), C27 Portal, C28 System
Administrator GUID, C29 End User GUID, C30 Reports
GUID;

 in layer L6: Package P17 - components: C31
Authorization Integrator, C32 Legacy Systems Integrator,
C33 Partner Systems Integrator, C34 Remote Systems
Integrator.

Components for combined programming represent
techniques for classic programming enriched with automation
elements, e.g. dynamic reconfiguration of data structures or
computing process management based on business rules or
business process specifications, etc. Components of this type
are the following:
 in layer L4: Package P09 – components C35 Process

definition BPMN (Business Process Model and Notation),
C36 Service definition UML (Unified Modeling
Language), C37 RDB Model;

 in layer L5: Package P12 - component C38 Business
Activity Monitor; in package P13 - component C39
Intelligent Documents Manager; in package P14 -
component C40 Organization Manager, in package P15 –
components C41 Process Manager;

 in layer L6: Package P17 - components C42 Enterprise
Resource Planning, C43 Enterprise Service Bus.

A Common Automated Programming Platform for
Knowledge Based Software Engineering

Ivan Stanev, Maria Koleva

A

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2476

Fig. 1 CPAP technological framework used to work in the cloud

III. CPAP COMPONENTS FOR AUTOMATED PROGRAMMING

CPAP technological framework for automated
programming (Fig. 2) add to the components presented in
section 2 above another two types of components [1], [9], [11]
– components for automated programming and components
for ontology programming.

Components for automated programming represent
automation tools based on the interpretation of formal models
(e.g. direct generation of software products from UML,
BPMN, EPC, fourth generation languages, formal methods,
etc.). This type of components include:
 in layer L3: Package P07 - components: C44 Document

Server, C45 Runtime Monitor, C46 ODB Server;
 in layer L4: Package P09 - components: C47 ODB Model,

C48 Case definitions, C49 Interface Model, C50 Reports
Model;

 in layer L5: Package P12 - component C51 Runtime
Manager; in package P14 - component C52 Reports
Manager; in package P15 - component C53 Forms
Manager.

Components for ontology programming provide for
automation through knowledge interpretation, learning and
self-learning (e.g. generate software based on ontology
descriptions, fuzzy interpreters of incomplete and inaccurate
specifications, code generators working with natural language

specifications, etc.). This type of components include:
 in layer L3: Package P07 - component C54 FullText

Indexing Server; in package P08 - component C55
Ontology Server;

 in layer L4: Package P09 - component C56 Ontology
Model;

 in layer L5: Package P15 - component C57 Knowledge
base Manager; in package P16 - component C58
Ontology GUID;

 in layer L6: Package P17 - component C59 Semantic
ESB.

IV. CPAP CONTRIBUTIONS TO INDUSTRIAL PROGRAMMING

In order to assess CPAP contributions to industrial
programming an analysis based on quantitative and qualitative
criteria is proposed in Тable I. This analysis covers the
following software products: Module for automated
programming of robots [6], [7], [9], Intelligent Product
Manual (IPM) [10], Intelligent Document Display (IDD) [1],
Intelligent Form Generator (IFG) [12].

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2477

Fig. 2 CPAP technological framework for automated programming

TABLE I
CPAP CONTRIBUTIONS TO INDUSTRIAL PROGRAMMING

Type

Contribution

KBASE applications
Module for automated
programming of robots

Intelligent Product
Manual

Intelligent Document
Display

Intelligent Form
Generator

quantitative product specification time reduced √
quantitative programming time reduced √ √ √ √
quantitative COTS components integration time reduced √
quantitative testing time reduced √ √ √ √
quantitative COTS components testing time reduced √
quantitative IT team reduced √ √
qualitative adaptive to various domain areas √ √ √ √
qualitative adaptive to different end users √ √
qualitative adaptive presentation to diverse standards √
qualitative adaptive presentation to different media √ √
qualitative real time code synchronization √ √
qualitative real time documents synchronization √
qualitative prevent emergency system failure √ √
qualitative real time performance improvement √ √

The following conclusions could be drawn as a result of the
analysis of automated programming techniques used in the
KBASE applications above:
(1) software development and testing time is considerably

reduced;
(2) Only the first design phase (initial knowledge acquisition)

requires increased resources, whereas the second design
phase (reuse of accumulated knowledge) requires
significantly reduced resources;

(3) COTS components integration and testing time is well
reduced;

(4) software products quality is substantially increased,
including capabilities for adaptation to new domain areas
and different end users, restructuring to efficiently
function on various media, improvement of version
control process, etc.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:12, 2015

2478

V. CONCLUSION

The CPAP technological framework provides opportunities
for cheaper and shorter development cycle as well as
improvement of the quality of the software products since
CPAP combines the advantages of different technologies for
automated programming.

Satisfactory economic return on efforts needed for the
introduction of automated programming tools is observed.

REFERENCES
[1] EU IST-1999-20162 Development and Applications of New Built-in-

Test Software Components in European Industries. Software
Architecture. 2003

[2] Liu, F., et al. NIST Cloud Computing Reference Architecture.
Gaithersburg: National Institute of Standards and Technology Special
Publication 500-292. US Department of Commerce. Pp. 35 2011.

[3] Mell, P., T. Grance. The NIST Definition of Cloud Computing.
Gaithersburg: National Institute of Standards and Technology NIST
Special Publication 800-145 US Department of Commerce. Pp. 7 2011.

[4] Organization for the Advancement of Structured Information Standards
(OASIS). Reference Model for Service Oriented Architecture. OAZIS.
Pp. 31. 2006.

[5] Piprani, B., D. Sheppard, A. Barbir. Comparative Analysis of SOA and
Cloud Computing Architectures Using Fact Based Modeling. Springer-
Verlag Berlin Heidelberg: OTM 2013 Workshops Volume 8186 of the
series Lecture Notes in Computer Science. Pp. 524–533. 2013.

[6] Stanev I. A Bulgarian Linguistic Processor Based on the Formal Model
Control Networks - General Concepts. In proceedings of the
CompSysTech'2002. Sofia. 2002. Pp. III.7-1 – III.7-5.

[7] Stanev I. Formal Programming Language Net. Part I – Conception of the
Language. In proceedings of the CompSysTech'2001. Sofia. 2001. Pp.
I.16-1 – I.16-5.

[8] Stanev I. M. Koleva, KBASE Technological Framework –
Requirements. ICSII 2015: 17th International Conference on Semantic
Interoperability and Integration. Rome. 2015 (submitted for publication).

[9] Stanev I. Method for Automated Programming of Robots. In Knowledge
Based Automated Software Engineering. Cambridge Scholars Press.
Cambridge. Pp.67 – 85. 2012.

[10] Stanev I., et al. Intelligent Product Manual - Definitions, Structure, and
Application in Agricultural Engineering. Proceeding of the XVI
International Conference on “Material Flow, Machines and Devices in
Industry” - ICMFMDI'2000, 2000. Belgrad. Pp. 1-153, 1-156.

[11] Stanev, I., K. Grigorova. KBASE Unified Process. Knowledge Based
Automated Software Engineering. Cambridge Scholars Publishing.
Cambridge. Pp. 1 – 19. 2012.

[12] EU OPAC Program K10-31-1/ 07-09-2010, Sub-project Д-
26/30.05.2012 Realization of Priority Municipality Electronic
Administrative Services. Software Architecture (Проект Реализиране
на приоритетни електронни административни услуги на общински
администрации. Софтуерна архитектура.) Ministry of Transport
Information Technologies and Communications. Sofia. 2013.

