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Abstract—We present probabilistic multinomial Dirichlet 

classification model for multidimensional data and Gaussian process 

priors. Here, we have considered efficient computational method that 

can be used to obtain the approximate posteriors for latent variables 

and parameters needed to define the multiclass Gaussian process 

classification model. We first investigated the process of inducing a 

posterior distribution for various parameters and latent function by 

using the variational Bayesian approximations and important sampling 

method, and next we derived a predictive distribution of latent 

function needed to classify new samples. The proposed model is 

applied to classify the synthetic multivariate dataset in order to verify 

the performance of our model. Experiment result shows that our model 

is more accurate than the other approximation methods.  

 

Keywords—Multinomial dirichlet classification model, Gaussian 

process priors, variational Bayesian approximation, Importance 

sampling, approximate posterior distribution, Marginal likelihood 

evidence.  

I. INTRODUCTION 

AUSSIAN PROCESSES (GPs) are natural generations of 

multivariate Gaussian random variables to infinite index 

sets. Gaussian process is also a process that is constructed from 

classical statistical models by replacing latent functions of 

parametric form by random processes with Gaussian prior. GPs 

have been applied in a large number of fields in machine 

learning. One of these fields is the Gaussian regression and 

classification problem. In the case of regression with Gaussian 

noise, inference can be done simply in closed from, since the 

posterior is also a GP. However, in the case of classification, 

exact inference is analytically intractable because 

non-Gaussian likelihood function is assumed [1]-[3].  

 One prolific line of attack is based on approximating the 

non-Gaussian posterior with a tractable Gaussian distribution 

[4]-[6]. The most popular technique for treating intractable 

probabilistic models in these areas is the variational Bayesian 

approximation [7]. Thus, method approximated an intractable 

probability distribution by the closest distribution within a 

tractable family, where closeness is defined by the Kullback - 

Leibler divergence. In most applications, the tractable families 

contain distributions which factorize in all or in tractable 

subgroups of random variables. Hence, the method neglects 
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correlations between variables which may be crucial in the 

learning of the hyper-parameters. However, despite these 

problems, empirical comparisons with exact analysis via 

MCMC and Laplace approximations illustrate the utility of the 

variational approximation as a computationally economic 

alternative to full MCMC and it is shown to be more accurate 

than the Laplace approximation.  

Here, we will demonstrate that the variational Bayesian 

multinomial Dirichlet Gaussian process approach is efficient to 

classify multivariate data with Gaussian process priors. Our 

results have also motivated by the inclusion of the variational 

Gaussian approach within a larger study of different methods 

for classification with Gaussian processes. 

II. GAUSSIAN PROCESS CLASSIFICATION MODEL 

A. Our Model 

Here, we are going to consider the multinomial Dirichlet 

Gaussian Process Classification Model (MDGPCM) defined 

such as. First, we have the data matrix as 
1( , , )

T

N=X x x⋯

which has dimension ( )N D× . Here, we represent the ( )N K×

dimensional matrix of Gaussian process latent variables as F  . 

And we also represent the ( 1)N ×  dimensional columns of F

and the ( 1)K ×  dimensional rows of F as , 1, ,k k K=f ⋯ and 

, 1, ,n n N=f ⋯ respectively. Then, we assume that a GP prior 

for the k -th latent vector function ( )kf x  is defined as the 

Gaussian distribution with zero mean vector and the ( )N N×  

dimensional covariance matrix kK . That is, ~ ( , )k kGf 0 K . 

Here, the ( , )i j -th element k

ijk  of the covariance matrix kK  

will be defined by:  

 

2

1

1
( , ) ( ), exp( ( ) )

2

, 1, ,

D
k k k k

ij ij d id jd

d

k k x x

i j n

ϕ
=

= = − −

=

∑K X φ

⋯

     (1) 

 

The ( 1)D × vector of covariance kernel parameters for each 

class is denoted by k
φ and associated hyper-parameters k

ψ and 

hyper-hyper parameters ( , )k kτ ζ complete the model.  

Moreover, we define the ( 1)NK × dimensional vector ( )f x

of the latent variables for K classes classification as: 

 
1( ) ( , , , , )k K T=f x f f f⋯ ⋯ , 

1(f , , f , f ) , 1, ,
k k k k T

n N k K= =f ⋯ ⋯ ⋯ ,             (2) 
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where the superscript k denotes a particular class and the 

subscript n  denotes the observation number. Then, the GP 

prior of latent vector ( )f x for K classes classification has 

usually been chosen to have only intra-class correlations. The 

covariance matrix for the prior of latent function ( )f x is defined 

as: 

 
1( , )

( , )

( , )

k

K

 
 

=  
 
 

K X φ 0

K K X φ

0 K X φ

⋯

⋮ ⋮

⋯

             (3) 

 

Second, we define the ( )N K× dimensional response matrix 

of associated target values as 
1( , , )

T

N=Y y y⋯ , where each 

component k

n
y  of ( 1)K × dimensional row vector 

1
( , , )

K T

n n ny y=y ⋯  takes zero or one, and satisfies the condition 

1

1
K

k

n

k

y
=

=∑  for all n . And we assume that a ( 1)K × dimensional 

row vector 1( , , )K T

n n n
y y=y ⋯  is distributed with one 

observation multinomial distribution with parameter vector 
1(π , , π )K T

n n n
=π ⋯ . That is, the π , 1, ,k

n
k K= ⋯ denotes the 

probability that the n-th observation 
nx belongs to the k-th class. 

Moreover, we define the all of auxiliary random variables 

π , 1, , , 1, ,k

n
k K n N= =⋯ ⋯  as a ( )N K× dimensional random 

matrix 
1( , , )

T

N=π π π⋯ with same size of response matrix Y . 

We also assume that the prior distribution of n-th parameter 

vector 1
(π , , π )

K T

n n n=π ⋯ of the ( )N K× dimensional random 

matrix 
1

( , , )T

N
=π π π⋯ is given as the Dirichlet distribution 

with K parameter vector 1( , , )K

n n n
α α=α ⋯ .  

Third, we have to consider the link function that specifies the 

relation between the latent function ( )f x  and the response 

mean vector ( | )E Y f . To drive this relationship, we have first 

considered the ( )N K× dimensional random matrix M of 

another auxiliary random variables , 1, , , 1, ,
k

nm k K n N= =⋯ ⋯ . 

Here, we have also assumed that each auxiliary random 

variable k

nm  is distributed with Gaussian (f ,1)
k

nN . And we 

define K -dimensional parameter vector 1( , , )K

n n n
α α=α ⋯  of 

Dirichlet distribution ( | )n nDir π α  as K parameters

1(exp( ), , exp( ))K

n n n
m m=α ⋯ . Then, the relationship between 

the response row vector 1( , , )K T

n n N
y y=y ⋯ and the auxiliary 

latent vector 1
(π , , π )

K T

n n n=π ⋯ is adopted as the following 

form: 

 

1k

n
y =  if 1π max {π }k j

n j K n≤ ≤=                          (4) 

 

Moreover, by using an expectation property of Dirichlet 

distribution and the softmax method, the probability that a 

response variable k

n
y  takes 1 can be defined by: 

1

exp( )
( 1| ) (π | exp( ))

exp( )

1, , , 1, , .

k

k k n

n n n n n K
l

n

l

m
p y E

m

k K n N

=

= = = =

= =

∑
m α m

⋯ ⋯

     (5) 

 

Therefore, since the random variables k

nm  is distributed with 

the Gaussian distribution (f ,1)k

n
N , the relation between the 

probability ( 1 | )
k

n np y = m  and latent function 
nf can be 

approximated as: 
 

1 1

exp( ) exp(f )
( 1 | )

exp( ) exp(f )

1, , , 1, , .

k k

k n n

n n K K
l l

n n

l l

m
p y

m

k K n N

= =

= = ≈

= =

∑ ∑
m

⋯ ⋯

              (6) 

 

Furthermore, an hierarchic prior on the covariance function 

parameters k
φ is employed such that each parameter has an 

independent exponential distribution ~ ( ),k k

d d
Expϕ ψ  

1, ,d D= ⋯  and a gamma distribution is placed on the mean 

value of the exponential ~ ( , ), 1, ,k k k

d
d Dψ σ τΓ = ⋯ . Thus, 

they are forming a conjugate pair. The associated 

hyper-hyper-parameters 1, . 1, ,
( , )

k K k Kσ τ= ==ω
⋯ ⋯ can be set to 

reflect some prior knowledge of the data. Alternatively, vague 

priors can be employed such that, for example, each 
1, . 1, ,

1
k K k Kσ τ= == =⋯ ⋯

. 

Finally, if we define a set of the hidden variables as 

{ , , }Θ = π m f and the parameters as 1, , 1, ,
{ , }

k K k K= =Φ = φ ψ
⋯ ⋯ , 

the joint likelihood function for all hidden variables and 

parameters takes the following form: 

 

1

( )

1

( , , | , ) ( | ) ( | exp( ))

( | ) ( | K ( , ))

( | ) ( | )

N

n n n n n

n

K
k k k k k

N N

k

k k k k

p p p

p p

p p

=

×
=

Θ Φ = =

×

×

∏

∏

Y X ω y π π α m

m f f X φ

φ ψ ψ ω

   (7) 

 

where the individual factors are respectively define as: ( | )p Y π

is one observation multinomial distribution with probability 

vector 
nπ , ( | )p π α is the Dirichlet distribution with parameter 

vector exp( )n n=α m , ( | )p m f is the Gaussian distribution 

with mean f k

n
and variance 1 , ( | , )p f X φ is a multivariate 

Gaussian distribution with zero mean vector and covariance 

matrix ( )K ( , )k k

n n× X φ , ( | )p φ ψ is an exponential distribution 

with parameter k

dψ , and . ( | )p ψ ω is the gamma distribution 

with parameter ( , )k kσ τ . 

B. The Variational Bayesian Approximation 

We now consider an approximate variational Bayesian 

inference to drive the posterior distributions for latent function 
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and parameters in our model. This method is a particular 

variational method which aims to find some approximate joint 

distribution ( ) ( , , )q qΘ = π m f over latent variables 

{ , , }Θ = π m f to approximate the true joint distribution 

( ) ( , , )p pΘ = π m f by minimizing the KL-divergence 

( ( ) | ( )KL q pΘ Θ defined as:  

 

( ( ) | ( | , , ))

( | , , , )
( ) ln

( )

KL q p

p
q d

q

Θ Θ Θ

 Θ Φ
= − Θ Θ Θ 

∫

Y X

Y X ω       (8) 

 

Then, vatiational distribution  ( )q Θ  is taken by minimizing 

the KL divergence, and it is equivalent to maximizing the free 

energy. By the way, the free energy is divided into two 

components as: 

 

( , ) ( ) ln ( | , , )

( ) ln ( )

F q q p d

q q d

Θ = Θ Φ Θ

− Θ Θ Θ

∫
∫

Y X ω
            (9) 

 

Here, the variational distribution ( )q Θ  is usually assumed to 

factorize over some partition of latent variables { , , }Θ = π m f

like as ( ) ( ) ( ) ( )q q q qΘ = π m f . It can be shown using the 

calculus of variations that the best distribution * ( )
i

q Θ  for each 

of the factors ( ), 1, 2,3iq iΘ =  (in term of the distribution 

maximizing the free energy) can be expressed as: 
 

*

( \ )( ) exp( (ln ( , | , , ))), 1, 2,3
ii qq E p iΘ ΘΘ ≈ Θ Φ =Y X ω     (10) 

 

where ( \ )
(ln ( , | , , ))

iq
E pΘ Θ Θ ΦY X α  is the expectation of the 

logarithm of the joint probability of the data Y and latent 

variables Θ , taken over all variables not in the partition. In 

practice, we usually work in terms of logarithm of the 

variational distribution *
( )iq Θ , i.e.: 

 
*

( \ )ln ( ) (ln ( , | , , ))

constant, 1,2,3

ii qq E p

i

Θ ΘΘ = Θ Φ

+ =

Y X ω
            (11) 

 

From a variational principle that we have considered so far, 

the variational Bayesian posterior distributions for latent 

function and all parameters can be summarized by the 

following iterations which, for all k and d , will optimize the 

bound on the marginal likelihood. 

First, we consider the variational approximate posterior 
* ( )q π for the parameter vector of classification probabilities π .  

 

* * * *

1

( ) ( ), ( ) ~ Dir( | )
N

n n n n

n

q q q
=

= ∏π π π π β           (12) 

* 1* K*
(β , ,β )n n n=β ⋯ , where 

*

( )
β (exp(m ))k

n

k k k

n n nq m
y E= + . 

 

Second, we consider the approximate posterior *
( )q m of 

normal auxiliary variables m over Dirichlet auxiliary vector π  

and the latent variables f . This is given as  

 

* * * * *

1 2

1 1

( ) ( ), ( ) ( ) ( )
N K

k k k k

n n n n

n k

q q m q m q m q m
= =

= = ×∏∏m     (13) 

 

where the distribution *

1
( )k

n
q m  is given by  

 

*

1

1

( )
( )

( )

k

k n

n K
l

n

l

r m
q m

r m
=

=

∑
( )exp(E [ln π ]exp( ))

( )
(exp( ))

n

k k

q n nk

n k

n

m
r m

m
=

Γ
π

   (14) 

                                                                

and *

* *

( )
1

E [ln π ] (β ) ( β )
n

K
k k l

n n nq
l

υ υ
=

= − ∑π
, ( )xυ is the digamma 

function, and the distribution *

2 ( )
k

nq m  is given by the normal 

distribution 
(f )

( | E ( f ),1).k
n

k k

n nq
N m Therefore, the required 

posterior expectation ( )
k

nE m can be computed as the following 

manner by using importance sampling method: 

 

* ( )

1

( ) ( ) ( )
L

k k k k k k l

n n n n n n

l

E m m q m dm m w m
=

= ≈ ∑∫        (15) 

 

where each (1) ( ), ,k k L

n n
m m⋯  are random samples drawn from; 

 

(f )
( | E ( f ),1)k

n

k k

n nq
N m , and 

* ( )

( ) 1

* ( )

11

( )
( )

( )

k l

k l n

n L k s

ns

q m
w m

q m
=

=
∑

  (16) 

 

Third, we consider the approximate posterior * ( )q f of latent 

variables f  over normal auxiliary variables m  and the 

parameters 1, ,k K=φ ⋯ . We have obtained the approximate 

posterior *
( )q f for latent function f : 

 

( )*

1

( ) | E( ), ,
K

k k k

k

q N
=

= Σ∏f f f                     (17) 

 

where E( ) ( ),k k kE= Σf m and 

 
1

( ) ( )( ) ( )
K (E ( ))( K (E ( )))k k

k k k k k

N N N Nq q

−
× ×Σ = +

φ φ
φ I φ  

 

Fourth, if we also consider the set of hyper-parameters 
1, , 1, ,{ , }k K k K= =Φ = φ ψ⋯ ⋯ , in this variational treatment, then the 

expectation of the covariance kernel hyper-parameters 1, ,k K=φ ⋯  

under the variational posterior distribution ( )
k

q φ can be 

approximated by drawing S samples such that each 

( )
~ ( ( ))kd

kd kd

s q
Exp E

ψ
ϕ ψ and so; 
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( )
1

E [ ] ( ),k

S
k k k

s sq
s

w
=

≈ ∑φ
φ φ φ                           (18) 

where, 

*

*

( )

( )
1

( ( ) | , ( , ))
( )

( ( ) | , ( , ))

k

k

k k

sqk

s S
k k

vq
v

N E
w

N E
=

=

∑
f

f

f 0 K X φ
φ

f 0 K X φ

 

 

Finally, the approximate posterior for hyper-parameters k

d
ψ  

is given as the gamma distribution with parameters 1kσ + and 

( )
E ( )k

d

k k

dq ϕ
τ ϕ+ .  And the required posterior mean values are 

given as; 

 

( )

( )

1
( )

E ( )
k
d

k
d

k
k

d k kq
dq

E
ψ

ϕ

σ
ψ

τ ϕ
+

=
+

                  (19) 

C. Predictive Distribution for New Observation  

Here, we have first to consider a predictive distribution 

new *( | , , , )q Θf X x y  of latent function 1
(f , , f )

K T

new new new=f ⋯

corresponding to new observation newx . Here, we define 

( | E( ))
k kϕK X as the ( )N N× covariance matrix containing the 

covariance function values given by training data points X , 

and we also define ( , | E( ))
k k

new new ϕk x X as the ( 1)N ×

covariance vector containing the covariance function values 

between the new point newx and those contained in training data 

X . Moreover ( , | E( ))
k k

new new newk ϕx x denotes the covariance 

function value for the new point and itself.  

Here, the predictive distribution 
new *( | , , , )q Θf X x y will be 

Gaussian. Hence, its mean vector and covariance matrix are 

given as follows. The predictive mean vector for latent function 

newf  is given by: 

 
1

*

1

( | , , , ) ( , | E( )) ( , ( ))

( , | E( )) ( ( , E( ))) E( )

T

q new new

T

new

Q E

Q

ϕ

ϕ

−

−

Ε Θ =

= +

ff X x y X x K X φ μ

X x I K X φ m
(20) 

 

and the covariance matrix for latent function 
newf is given by: 

 

1

new

1

( | , , , ) diag( , , )

( , | E( )) ( ( , ( ))) ( , | E( )

K

q new new new

T

new new

Cov k k

Q E Qϕ ϕ−

Θ =

− +

f X y x

X x I K X φ X x

⋯

  (21) 

 

When the mean (f )
k

newE  and the variance (f )
k

newVar of latent 

function f k

new
for each class 1, ,k K= ⋯  are given, we extract 

the S  samples (1) (S)f , , fk k

new new
⋯ of latent variable f k

new
from a 

normal distribution (f | (f ), (f ) )
k k k

new new newN E Var having this 

mean and variance. And using a similar method, we also extract 

the S  samples (1) (S)
, ,

k k

new newm m⋯ of the auxiliary variables k

newm  

for each class 1, ,k K= ⋯  from the normal distribution 

( | f ,1)
k k

new newN m having a mean f
k

new
and variance 1. Next, we 

define the parameters 1(s) (s)
(exp( ), , exp( ))

s K

new new newm m=α ⋯ of the 

Dirichlet probability distribution using the extracted samples 
1(s) (s)( , , )K

new new
m m⋯ and we extract again the classification 

probabilities vector ( ) 1(s) (s)
(π , , π )

s K

new new new=π ⋯ from the Dirichlet 

distribution. 

 
( ) 1(s) (s) 1(s) (s)~ ((π , , π ) | (exp( ), , exp( ))s K K

new new new new new
Dir m mπ ⋯ ⋯ . (22) 

 

Repeating this procedure S times, we have generated a total 

S number of classification probabilities vector (1) (S), ,
new new

π π⋯ . 

And using them, we calculate the mean of the classification 

probabilities vectors as: 

 

(1) (S)1
( )new new new

S
= + +π π π⋯                                (23)                                                                        

III. EXPERIMENTAL RESULTS 

To estimate the performance of the proposed algorithm, we 

will consider four partially overlapping Gaussian sources of 

data in two dimensions. First, in order to train a model, we 

generate four classes’ bivariate Gaussian random samples. One 

hundred twenty data points were generated by the four bivariate 

normal distributions with the mean vectors and covariance 

matrices described in Table I.  
 

TABLE I 

MEAN VECTOR AND COVARIANCE MATRIX FOR EACH CLASS S 

class Mean vector Covariance matrix  

Class1  (1.75,-1.0) 
1 0

0 1

 
  
 

 

Class2  (-1.75,1.0) 
1 0.5

0.5 1

 
  
 

 

Class3 (2,2)  
1 0.5

0.5 1

− 
  − 

 

Class4  (-2,-2) 1 0.5

0.5 1

− 
  − 

  

 

One hundred and twenty draws were made from Table I and 

the test samples are used in the proposed algorithm with a 

further 4,000 points. Each of the sample values were sampled 

uniformly thus creating a balance of samples drawn from the 

four target classes. Fig. 1 (a) shows a plotting of training data 

points on a two-dimensional space. Second, in order to verify 

the performance of the model, we generate different four 

classes of bivariate Gaussian random sample. Four thousands 

data points were generated by the bivariate normal distribution. 

Fig. 2 (a) shows the results that were monitored for 

covariance parameters during each step and as would be 

expected, it shows us a steady convergence in the 

improvements of the parameters. From Fig. 2 (b), we can also 

see that the development of the predictive performance follows 

that achieving a predictive performance of 92.2% at 

convergence. Therefore, it knows that the proposed method can 

entirely classify well data points. 
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(a) 

 

 

(b) 

Fig. 1 (a) Training data, (b) Testing data 

 

 

(a)                                              (b) 

Fig. 2 Experiments Results (a) Covariance Parameters φ�, (b) Correct 

Prediction rate 

IV. CONCLUSION 

In this paper, we consider probabilistic multinomial Dirichlet 

classification model for multidimensional data with Gaussian 

process priors placed over the latent function. Variational 

Byesian algorithm is used to drive approximate posteriors for 

latent function as well as parameters needed to define the 

Multinomial dirichlect Gaussian process classification model. 

The proposed algorithm was performed in two steps: each of 

which is the training step and classification step. First, in the 

training step, using the variational Bayesian formula, we 

derived approximately the posterior distribution of the latent 

function and parameters on the basis of the learning data. 

Second, in the classification step, using a derived posterior 

distribution of the latent function, we estimate the classification 

probabilities to assign new sample into proper class. We assign 

this sample into a class that has the maximum probability.  
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