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Abstract—Production fluids are transported from the platform to 

tankers or process facilities through transfer pipelines. Water being 
one of the heavier phases tends to settle at the bottom of pipelines 
especially at low flow velocities and this has adverse consequences 
for pipeline integrity. On restart after a shutdown, this could result in 
corrosion and issues for process equipment, thus the need to have the 
heavier liquid dispersed into the flowing lighter fluid. This study 
looked at the flow regime of low water cut and low flow velocity oil 
and water flow using conductive film thickness probes in a large 
diameter 4-inch pipe to obtain oil and water interface height and the 
interface structural velocity.  A wide range of 0.1–1.0 m/s oil and 
water mixture velocities was investigated for 0.5–5% water cut. Two 
fluid model predictions were used to compare with the experimental 
results. 

 
Keywords—Interface height, liquid-liquid flow, two-fluid model, 

water cut.  

I. INTRODUCTION 

N the petroleum industry, transfer pipelines convey 
production fluids from the platform to the tankers or 

onshore production facilities and as a result, immiscible oil–
water flows occur. In horizontal flow at low water cuts and 
mixture velocities, stratified flow pattern occurs where the less 
dense phase (oil) flows above the denser phase (water) with a 
well-defined wavy interface. While the density difference 
between the phases in liquid–liquid flows may be small, very 
large viscosity differences are frequently encountered. 
Accurate prediction of the phase behaviour such as flow 
regimes, fractions, and pressure gradient is essential in 
determining pumping requirements and these provide valuable 
information for the design and operation of such pipeline 
systems. Researchers such as [1] have in the past reported 
work on the behavior of the phases using various methods of 
visualization to study the interface behaviour and the 
mechanisms involved in transition to dispersed flow regimes 
as mixture velocity increases. In such cases, droplets of one 
phase are entrained in another, such that there is mixing at the 
interface in what is called dual continuous flow as discussed in 
[1]-[5], the pressure drop and phase holdup in such liquid – 
liquid systems has been predicted using the two-fluid model 
method [6]-[8]. However, these and other studies have largely 
focused on water cuts of 10% and above. Here, we present 
horizontal liquid-liquid experimental campaign conducted 
using oil of 7 cp viscosity with 0.5–5% water cut. Data and 
studies for this range of low water cuts is scarce despite the 
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high incidence of such conditions in practical petroleum 
pipelines.  

II. EXPERIMENTAL SETUP 

A. The Flow Loop 

Oil and water experiments were conducted on the Three-
Phase Test Facility at the Process Systems Engineering 
Laboratory at Cranfield University. As shown in Fig. 1, water 
and oil are pumped to the test area through a valve manifold 
system after measurement by flow meters. The length of the 
horizontal 4” line, in which the tests are conducted, is 26.3 m. 
The probe spool used in this study is mounted on the 4” 
horizontal flow line. This horizontal line exits directly into the 
3-phase separator.  

The water and oil are stored in 12,500 liters capacity tank 
respectively, and are pumped into the flow loop using two 
multistage Grundfos CR90-5 pumps. The pumps are identical 
and have a duty cycle of100 m3/hour at 10 barg pressure. The 
flow rates of the water and oil are regulated by their respective 
control valves. The water flow rate is metered by a 1” 
Rosemount 8742 Magnetic flow meter (up to 1 kg/s) and 3” 
Foxboro CFT50 Coriolis meter (up to 10 kg/s) while the oil 
flow rate is metered by a 1” Micro Motion Mass flow meter 
(up to 1 kg/s) and 3” Foxboro CFT50 Coriolis meter (up to 10 
kg/s).  

Water injected into 4” test line via a horizontal 2” flow line 
which is connected to the 4” flow line by a flexible 11mm i.d.  
PVC tubing. There is a gate valve to supply the water and 
another ball valve for flow control upstream of an ultrasonic 
flow meter on the 2” line. From the flow meter, the water is 
supplied to the four inch loop through a manifold that 
separates the flow into the three injection points that have 
mini-ball valves V2, V4 and V5 on the four inch pipe. During 
a test, only one valve of the three is opened allowing the water 
to be injected at a specific location at a time. The three 
injection points are located 10D, 30D, and 50D from the test 
spool. The flow meter used for precise water injection is an 
Atrato ultrasonic flow meter model 760 V10 with an accuracy 
of ±1.5% repeatability of ±0.1%, turn down of 250:1 and 
10bar rating. It uses time of flight method and measures a flow 
range from 0.1 to 20 liters/min. The maximum full scale error 
or maximum absolute error is 3.75% for the flow meter.  

The fluids are subsequently piped into the phase separation 
area where the water and oil are separated. After separation in 
a horizontal three phase gravity separator, the water and oil are 
cleaned in the oil and water coalescers before returning to 
their storage tanks. 
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The pipe radius is R and  and denote the area of the 
lighter and heavier phase respectively. Geometrically, these 
are given as: 

 

		 sin 2 ∗
∗ sin 2 ∗ (8)   

 

 sin 2 ∗
∗ sin 2 ∗    (9) 

 
2 , 2  

                                                                                                                             

2 ∗
∗              (10) 

 
Due to the assumption of a flat interface ∗= 180 degrees, 

thus (5) becomes (11), while (8) and (9) become (12) and (13). 
Substituting from the geometry (10) becomes (14):  

 

0       (11)  

 

		 sin 2       (12) 
 

		 2          (13)   
 

2 sin , 2 sin      
                                                                                                                                           

2 ∗
∗                    (14) 

 
When the geometrical expressions are substituted in (12) 

and solved iteratively for HL in a code written in MATLAB, 
the value of the holdup as water film height was obtained at 
various water cuts and mixture velocities. A comparison of 
these two-fluid model predictions with the experimentally 
measured water film height is as shown in Fig. 3. There is an 
increase in water film thickness with an increase in water cut. 
The prediction model was also compared with the results of 
experiments conducted on the three phase facility at Cranfield 
University Oil and Gas Centre. These are given in Figs. 4-6.  

As can be seen, the two fluid model predictions at 0.1 m/s 
mixture velocity (Fig. 4) well matches the experimentally 
observed values except at higher water cuts where the model 
under predicts. This can be explained by the fact that as the 
water cut increases, the curvature of the interface increases 
thereby deviating from the flat interface assumption of the two 
fluid model. For the higher mixture velocities of 0.2 and 0.5 
m/s in Figs. 5 and 6, more discrepancies occur most of which 
are over-predictions of the experimental values. An 
explanation for these may be the increasing phase slip that 
occurs as the mixture velocity increases, which is occasioned 
by increasing only the water flow rate. Therefore, the premise 
of no-slip used in the model is slightly weakened. 
Nevertheless, the differences between the model predictions 
and experimental values are no more than ±15%. This means 
that in order to improve predictions, more complicated 
geometrical relationships for curved interfaces may be 
applied. Furthermore, the no-slip assumption may be 

abandoned, but this may not result in more accurate solutions 
of the two fluid model at very low mixture velocities.  

 

 

Fig. 4 Variation of experimental and predicted film thicknesses 
against water cut at 0.5 m/s mixture velocity 

 

 

Fig. 5 Variation of experimental and predicted film thicknesses 
against water cut at 0.2 m/s mixture velocity 

 

 

Fig. 6 Variation of experimental and predicted film thicknesses 
against water cut at 0.5 m/s mixture velocity 
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IV. CONCLUSION 

An experimental study of oil –water two-phase flow has 
been conducted in a horizontal 4 in. pipe at low water cuts of 
less than 5% which are rare in the reported literature. Such 
flow conditions are frequently encountered in the petroleum 
transfer pipelines. Results show that water height measured 
using a dual plate conductance sensor, is proportional to both 
the inlet water cut and mixture velocity. Model predictions 
using a modified two-fluid model were in agreement with the 
experimental settled phase heights. Thus, this shows that the 
adapted two fluid model could be used for holdup prediction 
for low water cut liquid-liquid stratified flows. 
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