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 
Abstract—A number of studies have been conducted recently to 

investigate the influence of randomly oriented fibers on some 
engineering properties of cohesive and cohesionless soils. However, 
few studies have been carried out on freezing-thawing behavior of 
fine-grained soils modified with discrete fiber inclusions and additive 
materials. This experimental study was performed to investigate the 
effect of randomly distributed polypropylene fibers (PP) and some 
additive materials [e.g.., borogypsum (BG), fly ash (FA) and cement 
(C)] on freezing-thawing durability (mass losses) of a fine-grained 
soil for 6, 12, and 18 cycles. The Taguchi method was applied to the 
experiments and a standard L9 orthogonal array (OA) with four 
factors and three levels were chosen. A series of freezing-thawing 
tests were conducted on each specimen. 0-20% BG, 0-20% FA, 0-
0.25% PP and 0-3% of C by total dry weight of mixture were used in 
the preparation of specimens. Experimental results showed that the 
most effective materials for the freezing-thawing durability (mass 
losses) of the samples were borogypsum and fly ash. The values of 
mass losses for 6, 12 and 18 cycles in optimum conditions were 
16.1%, 5.1% and 3.6%, respectively.  

 
Keywords—Additive materials, Freezing-thawing, Optimization, 

Reinforced soil.  

I. INTRODUCTION 

HE cold regions are typically subdivided on the basis of 
whether the ground is only seasonally frozen, whether   

permafrost occurs everywhere (continuous), or whether   
permafrost occurs only in some areas (discontinuous) beneath 
the exposed land surface [1]. In seasonally frozen areas, soils 
are exposed to at least one freezing–thawing cycle every year. 
This has a significant effect on many engineering applications 
such as road, railroad, pipeline, and building constructions. 
Most of the engineering properties of soils are severely 
affected by freezing–thawing period. In the freezing period, 
ices in various sizes and shapes tend to segregate in soils 
resulting in the formation of characteristic structures in micro 
and macro scales [14]. The frozen layer begins to thaw from 
the top and the bottom at the same time during the thawing 
period. The effect of freezing–thawing on fine-grained soils 
can be more pronounced than that of the coarse-grained soils. 
Improvement of certain desired properties, like bearing 
capacity and shear strength of soil, can be undertaken by a 
variety of ground improvement techniques such as the use of 
randomly oriented fibers [2], [3], [7]-[9], [13], [15], [16], [20], 
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[21], [24], [27]-[29], [31] or additive materials [6], [10]-[12], 
[26], [30].  

Waste materials (e.g. fly ash, silica fume) can improve 
some engineering properties of the soil (e.g. bearing capacity, 
shear strength) but they are not enough to reach the desired 
level of some other characteristics of the soil (e.g. settlement, 
permeability) [18]. On the other hand, polypropylene fibers 
generally increase the shear strength but can also affect 
hydraulic conductivity negatively in impermeable liner 
systems. It is known that, some non-synthetic waste materials 
(e.g. borogypsym) can exhibit some raw material features in 
different industries. For this reason, the use of waste materials 
is important both for the environmental reasons and as they 
involve some raw materials. 

This study aims at analyzing, the use of natural and 
synthetic waste materials for soil improvement, and 
establishing the optimum amount of additives needed to 
achieve the required soil properties. In this respect, the 
Taguchi method is used to determine optimum levels of each 
material in the study.  

This experimental study was performed to investigate the 
effect of randomly distributed polypropylene fibers and 
additive materials (borogypsum (BG), fly ash (FA) and 
cement (C)) on freezing-thawing durability (mass losses) of a 
fine-grained soil for 6, 12, and 18 cycles.   

II. EXPERIMENTAL DESIGN 

Soil used in this study was obtained from a fine-grained soil 
deposit of Konaklı–Erzurum in the Eastern Anatolia Region of 
Turkey. In this region, there is a long winter, and snow 
remains on the ground from November until the end of April. 
From the data obtained at a station in Erzurum between 2003 
and 2013, the highest average temperature measured so far is 
19.8°C and the lowest average temperature is -10.4°C 
(Erzurum 12th Regional Directorate of Meteorology) [12].This 
soil deposit resembles an area exposed to freezing–thawing 
and is used much in engineering work in Erzurum. The soil 
can be classified as “high plasticity silt (MH)” according to 
the Unified Soil Classification System. Some index properties 
of the soil are given in Table I. In addition, some properties of 
borogypsyum, fly ash, cement, and polypropylene fibers 
provided by the manufacturer are given in Tables II and III.  

The Taguchi method employs standard tables known as the 
Orthogonal Arrays (OA) for construction the design of 
experiments. The orthogonal array (OA) experimental design 
method was chosen to determine the experimental plan, L9, 
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since it is the most suitable for the conditions being 
investigated, using four parameters with three levels each. The 
Taguchi method uses the S/N ratio (signal to noise) instead of 
the average value to interpret the trial result data into a value 
for the evaluation characteristics in the optimum setting 
analysis. This ratio expresses the scatter around a target value. 
If the S/N ratio is expressed in dB units, it can be defined by a 
logarithmic function based on the mean square deviation 
(MSD) around the target: 

 

             (1)  

 
where i is the number of a trial; MSDi is the square of the 
standard deviation of a trial i; r is the number of repetitions for 
experimental combination; Yi is performance value of the ijth 
experiment. In the Taguchi method, the experiment 
corresponding to optimum working conditions might have not 
been done during the whole period of the experimentation. In 
this case, the performance value corresponding to optimum 
working conditions can be predicted by utilizing the balanced 
characteristic of the OA. The Taguchi method is explained as 
a summary in this study. More detailed information about the 
Taguchi method can be found in [17], [22], [23], [25]. BG, 
FA, PP and cement (C) were added at different levels by 
weight of the total solid materials. Experimental factors and 
their levels to be studied are given in Table IV. An L9 OA was 
chosen to evaluate the experimental results. Details of the 
experimental design and approach are given in Table V. The 
columns show the levels of factors and each row represents a 
trial condition. 

 
TABLE I 

ENGINEERING PROPERTIES OF SOIL USED IN THE STUDY  
Liquid limit, wL (%)  66 

Plastic limit, wP (%)  35 

Plasticity index, PI (%)  31 

Specific gravity, Gs  2,5 

Maximum dry unit weight*, dmax (kN/m3) 15.4 

Optimum water content*, wopt (%) 22 

Electric  conductivity (mmhos/cm) 3.3 

pH  6.9 

Dispersion 1-2 
*Obtained from standard proctor tests. 

 
TABLE II 

SOME PROPERTIES OF BOROGYPSYUM FLY ASH, CEMENT  
 Borogypsyum (%) Fly ash (%) Cement (%) 

B2O3 1.62 -- -- 

CaO 27.8 6.6 59,61 

SO3 44.2 -- 3,31 

MgO 1.53 4.65 3,23 

Na2O 1.32 15.95 0,4 

Al2O3 0.23 15.95 5,23 

Fe2O3 0.84 16.3 3,3 

SiO2 20.95 47.5 21,02 

 
 
 
 

TABLE III 
PROPERTIES OF REINFORCEMENT MATERIALS USED IN THE STUDY  

Diameter, mm 0.05 

Length, mm 12 

Density,  kN/m³  9.1 

Tensile strength, N/mm²  320-400 

Elastic modulus, N/mm²  4000 

Specific surface, m2/N 20-30 

 
TABLE IV 

TEST FACTORS USED AND THEIR LEVELS  

Levels 
Parameters 

BG (%) FA (%) PP (%) C(%) 

1 0 0 0 0 

2 10 10 0.15 1 

3 20 20 0.25 3 

 
TABLE V 

CHOSEN L9 EXPERIMENTAL PLAN (OA)  

Trial 
Parameters and their levels 

BG(%) FA(%) PP (%) C (%) 

1 0 0 0 0 

2 0 10 0.15 1 

3 0 20 0.25 3 

4 10 0 0.15 3 

5 10 10 0.25 0 

6 10 20 0 1 

7 20 0 0.25 1 

8 20 10 0 3 

9 20 20 0.15 0 

 
The soil was dried in an oven at approximately 105°C. The 

required amounts of soil borogypsyum, fly ash, cement, and 
polypropylene fibers were blended together under dry 
conditions. 0-20% of BG, 0-20% of FA, 0-3% of C and 0-
0,25% of PP by total dry weight of mixture were used in the 
preparation of specimens. Because the fibers tended to lump 
together, considerable care and time were spent to get a 
homogeneous distribution of the fibers in the mixtures. Then 
the soil–fiber-additive mixtures were mixed with the required 
amount of water according to the optimum water content. 
Water content (w) versus dry density (γk) relationship for soil 
and polypropylene fiber reinforced soil and additive material 
stabilized samples was determined by using standard 
compaction test according to [5]. The specimens were placed 
in a moist room having a temperature of 21oC and a relative 
humidity of 70% for a period of 7 days. At the end of the 
storage in the moist room, water-saturated felt pads were 
placed between the specimens and the carriers, and the 
assembly was placed in a freezing cabinet having a constant 
temperature not warmer than −23oC for 24 h. Then, the 
assembly was removed and placed in a moist room with a 
temperature of 21oC and a relative humidity of 100% for a 
period of 23 h. At the end of this period, the specimens were 
removed and firm strokes were applied to the full height and 
width of the specimen with a wire scratch brush as an 
experimental maneuver leading to the mass loss per [4]. This 
process was called 1 cycle. Again, the specimens were placed 
in the freezing cabinet and the same procedure was continued 
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