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 
Abstract—Liver segmentation from medical images poses more 

challenges than analogous segmentations of other organs. This 
contribution introduces a liver segmentation method from a series of 
computer tomography images. Overall, we present a novel method for 
segmenting liver by coupling density matching with shape priors. 
Density matching signifies a tracking method which operates via 
maximizing the Bhattacharyya similarity measure between the 
photometric distribution from an estimated image region and a model 
photometric distribution. Density matching controls the direction of 
the evolution process and slows down the evolving contour in regions 
with weak edges. The shape prior improves the robustness of density 
matching and discourages the evolving contour from exceeding liver’s 
boundaries at regions with weak boundaries. The model is 
implemented using a modified distance regularized level set (DRLS) 
model. The experimental results show that the method achieves a 
satisfactory result. By comparing with the original DRLS model, it is 
evident that the proposed model herein is more effective in addressing 
the over segmentation problem. Finally, we gauge our performance of 
our model against matrices comprising of accuracy, sensitivity, and 
specificity. 

 
Keywords—Bhattacharyya distance, distance regularized level set 

(DRLS) model, liver segmentation, level set method.  

I. INTRODUCTION 

IVERS constitute one of the most prominent organs in our 
bodies. It performs key functions including cleaning blood 

from impurities, producing bile and proteins, treating sugar, 
decomposition of medications, and storing valuable nutrients 
such as iron, minerals and vitamins. As a result of high 
functionality, the liver is prone to many notorious diseases such 
as hepatitis C, cirrhosis, and cancer. With the very rapid 
advancement in computer science and its associated 
technology, computer-aided surgical planning systems (CAD) 
continue to play an important role in diagnosis and treatment of 
the aforementioned liver diseases. These promising approaches 
can map out the structures of various liver vessels, afford 
accurate 3D visualizations, and provide surgical insights of 
simulations with cutting. All these applications have the 
potential to lead to shorter planning times. One of the most 
daunting tasks in the context of computer tomography (CT) 
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images is to carry out an automatic and accurate segmentation 
of a liver from its surrounding organs. Establishing an effective 
methodology for liver segmentation from CT images proves to 
be a challenging mission. This is mainly due to the profoundly 
similar intensity values between liver and its adjacent organs. 
Other contributing factors include artifacts of pulsation and 
motion and partial volume effects. The substantial variations in 
shape and volume of liver among people even add more hurdles 
toward accurate segmentation of the liver. It follows that liver 
segmentation from medical images still pose an interesting 
theme of research.  

Methods and approaches currently implemented in liver 
segmentation in the CT images are grouped into two main 
families: semiautomatic and fully automatic liver segmentation 
methods. Semi-automatic liver segmentation methods 
necessitate a limited user intervention. This intervention could 
be a manual selection of seed points or a manual refinement of a 
binary mask for the liver. The term fully automated refers to a 
liver segmentation process that is implemented without any sort 
of operator intervention. As a consequence, this method is 
highly regarded by radiologists as it is free from user errors and 
biases. The advantage herein is that this method requires less 
operational work and saves time. Subsequent discussion is 
based into categorizing liver segmentation methods into gray 
level based methods, model based methods, and texture based 
methods [1]. It is obvious that each category will incur its own 
advantages and drawbacks.  

The gray level based methods [2]-[13] abstracts image 
features directly. This important property makes gray level 
based methods to be the most commonly deployed methods in 
liver segmentation. These methods are mainly based on the 
evolution of the gray level toward targets. Whilst gray level 
methods are normally fast, their effectiveness may be limited, 
most notably when gray level intensity of targets display 
changes. Despite of the deployment of prior knowledge, gray 
level methods may not succeed when the liver is represented as 
a small fraction of the entire image. Gray level methods can 
either be applied manually or through automatic rough 
segmentation. The goal of these two procedures is to gather 
data pertinent to the gray level. In spite of their reliability, gray 
level methods often need excessive computational time. 
Numerous gray level based methods rely on gradient 
information as an accurate approach to deal with image 
boundaries. However, this approach becomes impractical in the 
presence of complexity and several boundaries in which only 
some of them are the real boundaries of the desired object. 
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Under these circumstances, gray level based methods may 
potentially converge into incorrect boundaries, i.e. producing 
over or under segmentation. However, this could be readily 
corrected by refining the results through manual operations or 
via implementing other methods. On the contrary, structure 
based methods [14]-[17] can effectively deal with unclear liver 
boundaries through utilizing prior knowledge. However, these 
methods often demand substantial training data to account for 
all probable conditions of the liver. Implementing these 
methods is associated with significant difficulty, especially 
when handling nonstandard liver shapes. It is very difficult to 
develop a unified segmentation model for the liver based 
merely on structure methods. Texture based methods [18], [19] 
deploys pattern recognition and machine learning principles to 
locate boundaries of a liver. As a result, these methods enable 
one to collectively consider more features. Texture based 
methods can yield satisfactory results when the boundaries are 
not very clear. In addition to its dependency on training data, an 
accurate account of texture feature remains the main challenges 
in these methods. While many descriptors do exist, they could 
not accurately resemble corresponding descriptors in humans. 
It is worthwhile mentioning that both machine learning and 
pattern recognitions are still immature technologies with lesser 
ability to process information when compared with the human 
brain. They are not able to produce satisfactory segmentation 
results without the aid of other refined methods. In contrast, 
gray level based methods are more highly advanced as they can 
effectively deal with complex segmentation tasks.  

In most practical cases, gray level based methods can yield 
satisfactory performance in liver segmentation. Structure based 
methods rely principally on the shape of the object. This 
characteristic enables them to be a significantly more robust 
technique. Lastly, texture based methods attempt to follow the 
procedure that a human’s brain implements. Level set methods 
have been thoroughly deployed in medical images 
segmentation [20]-[22] However, these methods attain good 
results only when the initial contour is positioned near the 
target. In dealing with volumetric liver segmentation, methods 
can be classified into two groups, i.e., direct 3D segmentation 
and propagation of the 2D slice-based segmentation. In the first 
class, the user initializes a 3D deformable surface in terms of 
multiple 2D slices of the liver. In the approach, the initial 3D 
mesh is automatically refined by forces imposed by the image 
gradient and smoothness of the contour. As a result, these 
methods are timely consuming and require many user 
interventions, i.e., they are prone to observer variability. The 
second class of methods takes advantage of the slice-based 
propagation approach. In this methodology, the 3D CT images 
are further re-sliced into a number of 2D slices. A 2D 
segmentation is deployed in each slice. The latter is initialized 
by a propagated boundary from the previous 2D slice, and 
hence the process repeats itself. In other words, this approach 
reduces a 3D segmentation problem to a sequence of 2D 
segmentation problems. Each of the reduced 2D segmentation 
sub-problems is significantly simpler than the original 3D 
segmentation problem. Furthermore, it is significantly 
computationally cheaper to incorporate 2D shape data as a 

shape constraint into the 3D segmentation process. Since the 
change between adjacent slices is rather small, the final contour 
of a slice affords useful information with regard to the initial 
contour position and prior intensity and shape information. This 
in turn improves the segmentation performance of the level set 
method for the following slices.  

In our underlying goal is to segment the liver contour in each 
2D slice by utilizing a new force that guides the direction of the 
evolution and slows down the evolution process in the region 
with weak edges or without edges. This paper is organized as 
follows. In Section II, we survey literature pertinent to the 
methodology of the DRLS model. Section III illustrates our 
methodology. Section V presents experimental results. Finally, 
Section V conveys concluding remarks. 

II. DISTANCE REGULARIZED LEVEL SET METHOD 

Li et al. [23] introduced the level set method of distance 
regularized level set (DRLS) model. The DRLS model utilizes 
an edge-based active contour method in order to direct the level 
set function (LSF) to the desired boundary. This method is 
known to provide a simple and effective narrowband 
implementation without requiring re-initialization.  

Let :   be a level set function defined over the 

domain , then the energy function ( )   can be expressed as: 
 

( ) ( ) ( )p extR                                (1) 
 

where 0   is a constant and ( )pR  denotes the level set 

regularization term, identified by: 
 

( ) ( | |)pR p dx 


                                (2) 

 
where p  stands for an energy density function :[0, ) ,p    

defined as  
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Minimization of the energy ( )  can be attained by solving a 

level set evolution equation. For a LSF, an external energy 
function can be formulated as:  

 

( ) ( ) ( )ext g gL A                                (4) 
 

where  and  are the coefficient of the length term ( )gL   

and area term ( )gA  , which is given by  
 

( ) ( ) | |gL g dx                                          (5) 

 
and 

( ) ( )gA gH dx                            (6) 
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where [0,1)g is an edge indicator function given by 
 

*  
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1
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g

G I


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                               (7) 

 
In this equation G is a Gaussian kernel with a standard 

deviation , and I is the input image. In (5) and (6), the Dirac 
delta function  and the Heaviside function H

 are 

approximated by the following smooth functions 
  and H , 

respectively. This follows the general procedure in several level 
set methods: 
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In (8) and (9),   is a constant, typically set to 1.5. The length 

term ( )gL   was initially introduced by Caselles et al. [24] in 

their developed geodesic active contour (GAC) model. ( )gL   

estimates the line integral of the function g along the zero level 
contour of  . ( )gL   is minimized upon the existence of the 

zero level set of   at the object boundaries. As such, it 

maintains the curve smooth throughout the deformation 
process. The area term ( )gA   computes the weighted area 

enclosed within the evolving contour. It aims to speed up the 
motion of the zero level contour when the contour is not close 
to the desired object boundaries and to slow down the 
expanding and shrinking of the zero level contour when it 
approaches the object boundaries. ( )gA   introduces a balloon 

forces whereas the sign of  guides the direction of the level 
set evolution, either through its shrinking or expanding. Finally, 
the level set evolution equation in the DRLS model is expressed 
by: 

 

.div( ( ) ) ( ). .div ( ). .
| |pd g g

t

         


  
       

 (10) 

 
The main drawback with the DRLS model in the case of liver 

segmentation is that the curve evolves and deviates from the 
liver boundary at the region with weak edges or without edges. 
In this work, we will modify the distance regularization level 
set method [23] (DRLSM). This is achieved by introducing a 
new force that guides the evolution process and discourages the 
evolving contour from leaking at a region with weak edges or 

without edges. This new force also prevents the contour from 
going far from the liver boundary.  

III. THE PROPOSED METHOD 

In this paper, we modify the DRLS model to segment the 
liver contour in each 2D slice by combining both geometric and 
photometric information to control the direction of the 
evolution and slow down the evolution process in the region 
with weak or edges or without edges, which subsequently 
discourages the evolving contour from leaking at a region with 
weak edges or without edges and from deviating from the liver 
boundary. Our method is based on energy minimization. The 
energy function consists of two parts, one term is based on 
image features (Ei) and a second term is based on a shape prior 
Es. 

 

3 3(1 )i sE E E                         (11) 

 
where  λ3 є[0,1] defines the relative weight between Ei and Es. 
Smaller E means better matching between the evolving curve 
and the liver boundary. A curve which minimizes the energy E 
is taken to be a solution to the problem. The details of the 
method are described as below. 

A. Density Matching 

In this paper, we propose to minimize Ei which measures a 
similarity between the distribution of an image features inside 
the curve and that of a model distribution learned a priori. We 
used the Bhattacharyya coefficient [25]-[29] as a similarity 
measure.  

Let  2( ) :XI I x Z     be an image function from 

the domain   to the space Z of a photometric variable with 
intensity [0-255]. Let 

it E     be a closed planar 

parametric curve. Our purpose is to evolve   in order to divide 
  into two regions:

inR R corresponding to the interior of  

(foreground), and, c c
out inR R R   corresponding to the exterior of 

  (background). The evolution equation of   is sought by 
optimizing a statistical overlap prior. To introduce such prior, 
we first consider the following definitions: 
 Pin

is the nonparametric (kernel-based) estimate of the 

distribution of image data inside    
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where 

inA  is the area of region 
inR . Typical choices of K are 

the Dirac function and the Gaussian kernel [26] 
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 ( / )f g is the Bhattacharyya coefficient measuring the 

similarity between two statistical samples f and g: 
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We assume that the image feature inside the liver is 

characterized by a model distribution M, which can be learned 
priori. We propose to minimize the following energy functional 
with respect to L.  

 

( / ) ( ) ( )      in in

z z

M P M z P z


                    (15) 

 
Note that the values of B are always in [0, 1], measuring the 

closeness of the distributions; that is, larger values of B 
correspond to more similar distributions. The goal is therefore 
to maximize B. In order to convert this to the language of 
energies, we should set ( / )i inE M P  . Ei can thus be 

minimized via gradient descent using the following flow: 
 

  ( , )

( )1
( ( ) ( ) ( ) ( , )

( , ) 2 ( )
i in

in s t
out z Z

E P z
B M z P z K z I dz n s t

s t A M z



   

     (16) 

 
where t is an artificial time parameterizing the descent 
direction, and 

iE  denotes the functional derivative of Ei 

with  respect to Γ. This term has a clear interpretation: when the 
evolving curve reaches the boundary of liver, the distribution of 
image feature inside the curve approaches the model M. 
Therefore, both the global measure B(M(z),Pin (z)) and the pixel 
wise measure ( ) / ( )inP z M z  become very close to one. This leads

iE   to approximately equal to zero. 

 

  ( )
( , ) [( ( , ( ) )] ( , )

2 ( )
in

x
out z Z

P z
x t B M K z I dz x t

t A M z

   



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    (17) 

 
where   is the level set function corresponding to the evolving 

curve. Since the liver has a very similar intensity with its 
adjacent organs, the evolving curve may continue evolving to 
the adjacent organ producing an over segmentation problem. 
Consequently, this term will not yield a satisfactory result in the 
case of liver segmentation. To overcome this obstacle, we add 
another term to prevent the evolving curve from going far in 
regions with weak edges or without edges. We refer to this term 
as the shape prior. 

B. Shape Prior  

In many applications of image segmentation, some 
knowledge about the shape of expected objects of interest is 
available. This prior shape information can be introduced into 
the level set functional and embedded by the signed distance 
function. In this contribution, we have used the isotropic 
Gaussian shape prior [30] to improve the robustness of density 
matching and to discourage the evolving contour from going far 
away from the liver boundary or from leaking at a region that 
does not have an edge.  

 

2
0( ) ( ( ) ( ))sE x x dxdy  



                     (18) 

 

where ϕ is the current evolving curve and  ϕ0   is the prior shape. 
In our model the shape term represents the difference between 
two sign distance function (SDF), whereas its minimum will be 
attend when the two SDF matches each other. 

 

0( , ) ( ( ) ( )) ( , )   x t x x x t
t

   
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
            (19) 

IV. THE MODIFIED DRLSM 

The energy function in (1) can be rewritten as: 
 

1 2 3( ) ( ) ( ) ( )  p gR L E                         (20) 

 
where ( )E     is 

 
  3 3( ) ( ) (1 ) ( )i sE E E        

 
The level set evolution equation in the modified DRLS 

model is defined by: 
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    

  (21) 

 
The first term is penalizing energy and it acts as an internal 

energy to penalize the deviation from a SDF during its 
evolution. The second term is the edge term and it keeps the 
curve smooth during the deformation. The third term is the 
region energy which controls the direction of evolution. Its 
minimum will be when the distribution inside the curve 
matches the model distribution. The fourth term is the shape 
term to discourage the curve from evolving so far in the region 
with weak edges or without edges. Its minimum will be on the 
liver boundary.  

A. Pre-Processing 

The intensity distribution of the liver is irregular due to 
noises. As a result, liver segmentation without pre-processing 
becomes a daunting task. A smoothing step, in theory, would 
make the intensity distribution less variable. In our work, a 
Gaussian filter is used as a smoothing step.  

B. Segmentation of the Reference Slice 

This step is the most important step in our 3D liver 
segmentation method. The segmented liver contour will be the 
initial contour for the adjacent slice so the segmentation result 
should be accurate. The starting slice or the reference slice can 
be selected as the middle or the largest slice of the liver volume. 
The model distribution M is a learned priori from a 
pre-segmented training image. To segment the initial slice we 
evolve the curve a cording the following energy function: 
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       (22) 

C. 2D Slice Based Propagation Approach  

Since the variation of shape and intensity between the 
adjacent slices are very minimal, we can use this information 
from the previous slice to segment the next slice. In our 
method, we estimate the distribution model M and the prior 

shape 0 from the previous segmented slice and deploy it as 

prior information to segment its adjacent slices in both 
directions according to (21). 

V. RESULT AND DISCUSSION 

We tested our model on a liver dataset containing 10 
volumes of abdominal CT images. Each volume has 64 slices 
and the size of each slice is 512 × 512 pixels. Each slice in the 
dataset is provided with corresponding ground truth segmented 
manually by a radiologist. The model distribution M is to be 
learned a priori from a pre-segmented training image for one 
volume of abdominal CT images. In each experiment, we 
selected values of λ1, λ2 and λ3 to be 0.02, 5 and 0.5 respectively. 
The zero level set is initialized as a SDF and evolves according 
(22) to segment the reference slice and (21) to segment all the 
remaining slices in the liver volume.  

 

 

(a)                                   (b)                                      (c) 

Fig. 1 Comparisons of liver segmentation results between the DRLS 
model and the proposed method (a) The liver slice in a CT scan, (b) 
The final segmentation result of the DRLS model, and (c) The final 
segmentation result with our proposed method (The final evolving 

contour in red and ground truth segmented manually by a radiologist is 
represented in green) 

 
Figs. 1 and 2 present segmentation results of the DRLS 

model and the proposed model in a liver CT slice. Our model 
performs well and gives a satisfactory result comparing to the 
DRLS model. The DRLS model fails to segment the liver 
boundary and the evolving contour leaks from the region with 
weak edges. Our method slows down the evolution process 
close to the liver boundary and prevents the evolving contour 
from going far in the region with weak edges or without edges. 

Comparing with the DRLS model, our model is more effective 
in dealing with over-segmentation problem.  
 

 
(a)                          (b)                             (c)                              (d) 

Fig. 2 Comparisons of liver segmentation result between the DRLS 
model and the proposed method (a) The liver slice in a CT scan, (b) 
The ground truth segmented manually by a radiologist, (c) The final 

segmentation result of the DRLS model and (d) shows the final 
segmentation result with our proposed method with 99% accuracy 

 
Fig. 3 shows some examples of liver extraction results for 

one volume of abdominal CT images based on our proposed 
method. The model deals very well with the over-segmentation 
problem.  

Our model can handle the over-segmentation problems very 
well in comparison with the DRLS model. We use three metrics 
to evaluate the segmentation result: accuracy, sensitivity and 
specificity. The first matrix evaluates the general performance 
of our method; the second one assesses the acceptance 
capability of liver tissues and the last one focuses on the 
rejection capability of non-liver tissues. 

Accuracy is defined as: 
 

 

                                                  

   
TP TN

accuracy
TP TN FP FN




  
                       (23) 

 
where TP refers to the number of true positive cases; TN is true 
negative cases; FP is false positive cases and FN is false 
negative cases. Table I defines TP, TN, FP and FN.  

Sensitivity is defined as:  
 

   
TP

sensitivity
TP FN




                        (24) 

 
Sensitivity term refers to the number of liver tissues that are 
accepted in the outcome in comparison with ground truth. 
Lastly, specificity is represented by:  

 

                                                  

   
TN

specificity
TN FP




                    (25) 
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Fig. 3 Experimental results of our proposed method on a sequence of liver slices for one person (The green and red colors refer to the ground truth 
segmented manually by a radiologist and the final segmentation result of our proposed method, respectively) 

 
TABLE I 

 THE DEFINITION OF TP, TN, FP AND FN 

 
Ground truth label 

Positive            negative 

Test 
outcomes 

positive                  TP                 FP 

negative                 FN                 TN 

 
TABLE II 

 PERFORMANCE METRICS OF THE PROPOSED LIVER SEGMENTATION 

ALGORITHM 

accuracy 

Average                     0.9953 
Standard deviation    0.0030 
Max                           0.9995 

Min                            0.9888 

sensitivity 

Average                     0.9300 
Standard deviation    0.0455 
Max                           0.9959 

Min                            0.7988 

specificity 

Average                     0.9980 
Standard deviation    0.0018 
Max                           1 

Min                            0.9922 

    
Specificity term signifies the number of non-liver tissues that 

are rejected in the outcome. The result shows that our method 
achieves high accuracy, specificity, and sensitivity. In 
reference with regularized level set method, our method shows 
more effectiveness on the unclear boundary cases. Figs. 1 and 2 
reveal that when the boundary between liver and around tissues 
is not clear, regularized level set leads to over-segmentation 
whereas our method stops at the boundary. Table II shows the 
performance metrics of the proposed method. 

VI. CONCLUSION 

A novel method is presented herein to extract the liver from 
the CT images using shape and density prior information with a 
high accuracy. The main merits of this approach are 
characterized by its profound ability to guide the direction of 
the evolving contour and to slow down the evolving contour in 
regions that are associated with weak edges or without edges. 
Furthermore, in the proposed model the evolving contour is 
prevented from going far away from the liver boundary or from 
leaking at regions with weak or no edges. The experimental 
results illustrate that the method generally attains satisfactory 
results in reference to the original DRLS model.   
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