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 
Abstract—Numerical study of the static response of 

homogeneous clay stratum considering a wide range of cohesion and 
subject to foundation loads is presented. The linear elastic–perfectly 
plastic constitutive relation with the von Mises yield criterion were 
utilised to develop a numerically cost effective finite element model 
for the soil while imposing a rigid body constrain to the foundation 
footing. From the analyses carried out, estimate of the bearing 
capacity factor, Nc as well as the ultimate load-carrying capacities of 
these soils, effect of cohesion on foundation settlements, stress fields 
and failure propagation were obtained. These are consistent with 
other findings in the literature and hence can be a useful guide in 
design of safe foundations in clay soils for buildings and other 
structure. 
 

Keywords—Bearing capacity factors, finite element method, safe 
bearing pressure, structure-soil interaction. 

I. INTRODUCTION 

XCEPT for floating structures [1], most engineering 
facilities are largely supported on soils which are quite 

varied in their inherent properties and response to structural 
loadings. To avoid failures in foundations and by extension on 
the super structure, designers normally estimate maximum 
acceptable bearing pressure between the foundation and the 
supporting soil using some set of equations, considering its 
shear strength and settlements that can be allowed for the 
structure under consideration. 

For shallow foundations, the Terzaghi’s [2] equation of 
computing the ultimate bearing capacity gives reasonably 
conservative values and does not account for the contribution 
of the shear strength of the soil above the base of the 
foundation. It is mostly used in design of foundations bearing 
pressures for granular and c-ϕ soils. A more accurate equation 
for estimating bearing capacities of soils is that developed by 
Meyerhof. The Meyerhof’s equation [3] presented in (1) can 
be applied to both shallow and deep foundations and may be 
used for all soil types. 

The Meyerhof’s net bearing capacity equation for 
foundation accounting for the effect of cohesion, surcharge 
and unit weight of a soil is given by: 
 

  BNNqcNq qcult 2

1
10 

      
(1) 
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where cN , qN and N are the Meyerhof’s bearing capacity 

factors,  is the soil surcharge and B is the footing width. 

For cohesive soils where 0  and 0 NNq
, the 

bearing capacity equation reduces to 
 

cult cNq 
          

  (2) 

 
Herein, for the numerical analyses of the structure-soil-

interactions, the soil constitutive model adopted is such as to 
account for the effect of geometric non-linearity, hence the use 
of a non-linear stress-strain relation accounting for both linear 
elastic and plastic response state of the soil. 

The von Mises failure model was also utilised for 
estimation of the total (un-drained) stress state of the clay 
which expresses the maximum shearing stress that the clay can 
support and it is given by the yield function [4]; 
 

  cf ij  2
1

2J  
 
where 

ij  is the Cartesian stress tensor, 
2J  is the second 

invariant of the deviatoric stress tensor and c  is a material 
constant (soil cohesion). 

II.  NUMERICAL MODEL FINITE ELEMENT DISCRETIZATION AND 

MESH REFINEMENT 

For the un-drained soil conditions, a unit width (B = 1) strip 
footing of semi-infinite length, consistent with conventional 
practice was employed. However, to ensure meshing 
efficiency and to optimize computation time, advantage was 
taken of the structure/loading symmetry, hence only a quarter 
of the entire structure was modeled. 

Preliminary study to establish an optimum depth-to-width 
ratio for the model (so as to avoid interference of the soil 
boundaries with the soil deformation and collapse zones) was 
carried out. A depth-to-width ratio of 5 (H/B=5) was found to 
provide an optimum solution for stress and deformation fields 
and hence adopted in this study. 

This is apparently more computationally efficient than the 
width-depth-ratio of 10 as adopted by [6] in a similar study. 

The finite element discretization and analyses of the 
structure-soil-interaction problems were carried out using the 
PLAXIS code. Unstructured meshes consisting of 15 nodded 
triangular elements (Fig. 1) were used. This is to take 
advantage of the traditional characteristics of these elements; 
i.e. the ease of efficient element arrangement and refinement 
of the mesh at the vicinity of corners of the footings which is 
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