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Abstract—Various nanomaterials can be used as a drug delivery 

vehicles in nanomedicine, called nanocarriers. They can either be 
organic or inorganic, synthetic or natural-based. Although synthetic 
nanocarriers are easier to produce, they can often be toxic for the 
organism and thus not suitable for use in treatment. From natural-
based nanocarriers, the most commonly used are protein cages or 
viral capsids. In this work, virus bacteriophage λ was used for 
delivery of different cytotoxic drugs (cisplatin, carboplatin, 
oxaliplatin and doxorubicin). Large quantities of phage λ were 
obtained from phage λ-producing strain of E. coli cultivated in 
medium with 0.2% maltose. After killing of E. coli with chloroform 
and its removal by centrifugation, the phage was concentrated by 
ultracentrifugation at 130 000×g and 4°C for 3 h. The encapsulation 
of the drugs was performed by infusion method and four different 
concentrations of the drugs were encapsulated (200; 100; 50; 25 
µg·mL-1). Free drug molecules were removed by filtration. The 
encapsulation was verified using the absorbance for doxorubicin and 
atomic absorption spectrometry for platinum cytostatics. The amount 
of encapsulated drug linearly increased with the increasing 
concentration of applied drug with the determination coefficient 
R2=0.989 for doxorubicin; R2=0.967 for cisplatin; R2=0.989 for 
carboplatin and R2=0.996 for oxaliplatin. The overall encapsulation 
efficiency was calculated as 50% for doxorubicin; 8% for cisplatin; 
6% for carboplatin and 10% for oxaliplatin.  
 

Keywords—Bacteriophage λ, doxorubicin, platinum cytostatics, 
protein-based nanocarrier, viral capsid. 

I. INTRODUCTION 

HE boom of nanomedicine in recent years has led to the 
development of numerous new nanomaterials that can be 

used as nanocarriers in the drug delivery. Nanomaterials 
provide some unique features that are not shown in the bulk 
materials with the same chemical composition [1], most 
notably color but more importantly chemical or magnetic 
properties or melting temperature [2].  

Use of nanocarriers can provide some useful attributes. The 
encapsulation of cytotoxic drug into nanocarrier can 
significantly decrease negative side effects that are often 
associated with the treatment. It also increases the efficiency 
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of administered drug and provides ways of specific targeting 
just to unhealthy cells or virions [1]. In addition, the water-
solubility, biocompatibility and storage life-time is increased 
[3], [4].  

The nanocarriers can either be synthetic or natural-based 
[5]. The disadvantage of many synthetic nanocarriers is their 
toxicity in patient’s body. Protein cages that can naturally be 
found in human body do not exhibit such disadvantage [6]. 
However, the release of cargo from some protein cages in 
target cells can be problematic. Moreover, the capsid of many 
viruses, including phage can serve as a special type of protein 
cages [7]. Viral particles are usually formed by hundreds to 
thousands self-assembling protein molecules forming a hollow 
shell for nucleic acid [8]. They can have various shapes, most 
often spherical, but also icosahedral or rod-like and they are 
genetically programed to provide morphological uniformity 
with the size ranging from 10 nm to 1 µm [9]. Moreover, the 
structure of many viruses is known down to the level of atoms, 
so they can easily be modified with functional groups of 
interest [10]. They can also be easily prepared in large amount 
in laboratories, are very stable and easy to store [11]. They 
often cause immune response in patients, which can be 
beneficial in cancer treatment [12]. The most frequently 
viruses are mammalian adenoviruses, phages MS2, M13 or Qβ 
or plant viruses, such as cowpea chlorotic mottle virus [9]. 

Phages infect bacterial cells; therefore, they are not harmful 
to human cells; however, they can cause immune response. 
The immunogenicity can be solved by coating of their surface 
with polyethylene glycol [13]. The targeting of phage particles 
to cancer cells can be solved by producing of empty phage 
capsids during which the targeting moieties (e.g. peptides) can 
be cloned into genes of phage capsid to decorate its surface 
[10]. Moreover, the produced capsids do not contain viral 
nucleic acid and are therefore not infectious to beneficial 
bacteria in the patient’s body. The protein cage composed of 
viral capsid is larger than other frequently used apoferritin 
cage [9], [14] but its size is still small enough to benefit from 
passive targeting by Enhanced Permeability and Retention 
(EPR) effect [15], [16]. The viral particles can be easily 
produced in large bulks and their purification only consists of 
host bacteria removal by centrifugation and subsequent 
ultracentrifugation in sucrose gradient [17].  

In this work, bacteriophage λ was used as a nanocarrier for 
anthracycline drug doxorubicin and platinum drugs cisplatin, 
oxaliplatin and carboplatin.  
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encapsulation efficiency was approximately 5× lower, with the 
average of 8% for cisplatin, 6% for carboplatin and 10% for 
oxaliplatin. Therefore, oxaliplatin showed the highest 
encapsulation efficiency of the tested platinum drugs but still 
the encapsulation efficiency was significantly lower than in 
the case of doxorubicin. 

The difference between encapsulation efficiency for 
doxorubicin and platinum drugs was probably caused by the 
differences in their structures. The multiple aromatic circles of 
doxorubicin may probably be able bind to the proteins of 
phage λ by π-π stacking [18]. Other previous results [19] also 
concluded that doxorubicin is bound to the proteins of viral 
capsid and not the nucleic acid, with only 1% of encapsulated 
doxorubicin present in the DNA of bacteriophage λ.  

 
TABLE I 

THE CALCULATED ENCAPSULATION EFFICIENCY OF 15 µG·ML-1 OF PHAGE Λ 

WITH 200; 100; 50 AND 25 µG·ML-1 OF APPLIED DOXORUBICIN (DOX), 
CISPLATIN (CISPT), CARBOPLATIN (CARBOPT) AND OXALIPLATIN (OXALIPT) 

AS MEASURED BY ABSORBANCE AT 480 NM FOR DOXORUBICIN AND AT 265.9 

NM AT ATOMIC ABSORPTION SPECTROMETRY FOR THE PLATINUM DRUGS 
Applied drug 
concentration 

(μg/ml) 

Encapsulation efficiency (%) 

DOX CisPt CarboPt OxaliPt 

200 47 8 6 10 

100 51 10 7 10 

50 45 6 5 8 

25 58 8 8 11 

Average 50 8 6 10 

IV. CONCLUSION 

Bacteriophage λ was proven to be a possible protein-based 
nanocarrier for cytotoxic drugs. The encapsulation occurs 
mainly by interactions of drug molecules with the viral capsid. 
The highest encapsulation efficiency was observed using 
anthracycline cytotoxic drug doxorubicin (50%). From the 
tested platinum drugs, oxaliplatin had the highest 
encapsulation efficiency (10%), but significantly lower than 
doxorubicin. The difference was probably caused by better 
binding of doxorubicin to phage proteins through π-π stacking 
interactions. Phage capsid can be easily produced in large 
quantities and modified with targeting moieties.  
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