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Abstract—The customers use the best compromise criterion
between price and quality of service (QoS) to select or change
their Service Provider (SP). The SPs share the same market and
are competing to attract more customers to gain more profit. Due
to the divergence of SPs interests, we believe that this situation is a
non-cooperative game of price and QoS. The game converges to an
equilibrium position known Nash Equilibrium (NE). In this work, we
formulate a game theoretic framework for the dynamical behaviors
of SPs. We use Genetic Algorithms (GAs) to find the price and
QoS strategies that maximize the profit for each SP and illustrate
the corresponding strategy in NE. In order to quantify how this NE
point is performant, we perform a detailed analysis of the price of
anarchy induced by the NE solution. Finally, we provide an extensive
numerical study to point out the importance of considering price and
QoS as a joint decision parameter.

Keywords—Pricing, QoS, Market share game, Genetic algorithms,
Nash equilibrium, Learning, Price of anarchy.

I. INTRODUCTION

RECENTLY, game theory has been widely used to analyze
the selfish behavior of customers and service providers

in telecommunications systems. Several studies have shown
that the selfish behavior of customers leads to a typical
prisoner’s dilemma situation that causes a network collapse.
In the literature, a single decision action (e.g. the price) is
commonly used for computing an equilibrium. However, it is
necessary to include more than one parameter in the model to
take into account the quality of service. The competition in
terms of price and QoS between SPs entails the formation of
non-cooperative games. We consider a game of several SPs,
in which each player tries to maximize its own revenue. The
whole system of SPs would have no incentive to deviate from
the Nash equilibrium point. In this work, we present a model
to calculate a bi-criteria Nash equilibrium (here, service price
and quality of service) for several SPs. Then we will analyze
the interactions between different SPs who wont attract more
clients and maximize their respective profits. Our model is
mainly inspired from [6], where the authors have constructed a
Markov model that derive the behavior of customers depending
on the strategic actions of the SPs, to study a non-cooperative
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game for pricing problem considering QoS as an extra decision
parameter. We base our study on the concepts of demand for
services of a given SP. This demand given by linear function
that depends on the vectors of prices and QoSs, is a commonly
used function in research related to competitive network and
equilibrium models [9][5], to calculate the reputation of an SP
in the market.

Rationality is the most fundamental assumption in game
theory’s works; every player looks to maximize its own utility
[27]. In this context, the players know all the information
about the game, i.e. there is a complete information. So, we
consider that all players are said to be rational and intelligent,
i.e. every player acts in such a way as to maximize his or
her expected payoff or utility as economists would say and
can deduce what his or her opponent will do when acting
rationally. In fact, humans use a propositional calculus in
reasoning, the propositional calculus concerns truth functions
of propositions, which are logical truths (statements that are
true in virtue of their form). For this reason, the assumption of
rational behaviour of players in telecommunications systems is
more justified, as the players are usually devices programmed
to operate in certain ways. However, there are previous studies
that have shown that humans do not always act rationally [10].

A. Related Works

Applying game theory in telecommunications problems is
an active research area, in which game-theoretic models have
been developed and studied in the last decades, [6], [9], [19],
[2], [1], [7], [22]. These models are interested to pricing issue,
they proposed non-cooperative game formulations to analyze
behaviours of players that selfishly decide their strategies to
maximize their respective profits. Other works consider the
criteria of price as an implicit parameter, which is determined
as a function of the degree of saturation on the network.
Typically in these approaches, the price is a shadow price.
For more details on those approaches see, [17], [18], [29].
Nonetheless, the price of anarchy has been studied in a large
and diverse number of games, e.g., in areas like wireless
ad-hoc networks [8], [15], routing and congestion [4], [23],
network creation [3], or facility location [26]. In our model,
we do not take into account network topology, but rather
the effective service proposed by each SP as a single entity.
In other words, the price and QoS proposed by an SP will
not depend on the source or destination, distance, etc. that
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underlies the request of each user. After we have proved
existence of Nash equilibrium, we propose a genetic algorithm
that allows learning the Nash equilibrium of price and QoS
strategies decided by SPs.

II. PROBLEM MODELING

In this work, we formulate the interaction among service
providers (SPs) as a non-cooperative game. Each SP chooses
the Quality of Service to guarantee (it depends on the amount
of requested bandwidth) and the corresponding price.

We consider a system with N service providers. Let pi
and qi be, respectively, the tariff/pricing policy and the QoS
guaranteed by SP-i. Now, each customer seeks to subscribe
to the operator which allows him to meet a QoS sufficient
to satisfy his/her needs, at suitable price. We considers that
behaviors of customers has been handled by a simple function
so called demand functions, see equation (1). This later
depends on the price and QoS strategies of all SPs. From
a tagged SP’s point of view, the question is to set the best
pricing strategy and the best QoS (amount of bandwidth to
request from the network owner). SPs are supposed to know
the effect of their policy on the customers subscription policy.
Whereas from customers point of view, the question is to find
the SP that has the best price-QoS tradeoff conditions.

A. Demand Model

For simplicity, we consider that the demand function Di

for services of the tagged SP-i is linear with respect to the
set price pi and the promised QoS qi [2]. This demand
function depends also on prices p−i and QoS q−i set by the
competitors. Namely, the demand function of SP-i depends
on p = [p1, .., pN ] and q = [q1, .., qN ]. Eventually, Di is
decreasing w.r.t. pi and increasing w.r.t. pj , j �= i. Whereas
it is increasing w.r.t qi and decreasing w.r.t. qj , j �= i. Then,
the demand functions w.r.t services of SP-i can be written as
follows:

Di(p, q) = D0
i − αi

ipi + βi
iqi +

∑
j,j �=i

[
αj
ipj − βj

i qj

]
,

∀i ∈ {1, .., N}. (1)

where D0
i is a positive constant used to insure non-negative

demands over the feasible region. While αj
i and βj

i are positive
constants representing respectively the sensitivity of service
provider i to price and QoS of service provider j.

B. Utility Model

The total revenue of SP-i is Di(p, q)pi. We assume that we
have a single network owner, this latter charges each SP-i a
cost ϑi per unit of requested bandwidth. In order to insure
the customers loyalty, the amount of bandwidth μi required
by SP-i should depend on Di(.) and on the QoS qi it wishes
to offer to its customers. Therefore, the net profit of SP-i is
simply the difference between the total revenue and the fee
paid to the network owner:

Ui(p, q) = Di(p, q)pi − Fi(qi, Di), ∀i ∈ {1, .., N}.
where Fi(qi, Di) is the fee paid by SP-i (investment of SP-i):

Fi = ϑiμi (qi, Di)

where μi is the amount of bandwidth required by SP-i, such
that ϑi is a cost per unit of requested bandwidth. We assume
that the QoS corresponds to the expected delay, also we
consider the Kleinrock delay which is a common delay used
in Networking Games, so:

qi =
1√

Delayi
=

√
μi −Di

that mean that:

μi = q2i +Di

While, the utility function of the SP-i is given by the following
formula:

Ui(p, q) = Di(p, q) (pi − ϑi)− ϑiq
2
i , ∀i ∈ {1, .., N}. (2)

III. NON-COOPERATIVE GAME FORMULATION

Let G = [N , {Pi, Qi}, {Ui(.)}] denote the non-cooperative
price and QoS game (NPQG), where N = {1, .., N} is
the index set identifying the SPs, Pi is the price strategy
set of SP-i, Qi is the QoS strategy set of SP-i, and Ui(.)
is the utility function. Each SP-i selects a price pi ∈ Pi

and a QoS measure qi ∈ Qi. Let the price vector p =
(p1, .., pN )T ∈ PN = P1 × P2 × ... × PN , QoS vector
q = (q1, .., qN )T ∈ QN = Q1 × Q2 × ... × QN (where T
represents the transpose operator). The utility of SP-i when
it decides the strategy price pi to allocate the QoS qi is
given in (2). We assume that the strategy spaces Pi and
Qi of each SP are compact and convex sets with maximum
and minimum constraints, For any given user i we consider
strategy spaces the closed intervals Pi = [pmin, pmax] and
Qi = [qmin, qmax]. In order to maximize their utilities, each
SP-i decides a price pi and QoS qi. Formally, the NPQG
problem can be expressed as:

max
pi∈Pi,qi∈Qi

Ui(p, q), ∀i ∈ N . (3)

A. Nash Equilibrium

Taking rationality of service providers into account, the
Nash equilibrium concept is the natural concept solution of the
NPQG game. We first will investigate the Nash equilibrium
solution for the induced game as defined in the previous
section. We show that Nash equilibrium solution exists and
is unique by using the theory of concave games [24]. We
recall that a non-cooperative game G is called concave if all
players’ utility functions are strictly concave with respect to
their corresponding strategies [24].

According to [24], a Nash equilibrium exists in a concave
game if the joint strategy space is compact and convex, and
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the utility function that any given player seeks to maximize is
concave in its own strategy and continuous at every point in
the product strategy space. Formally, if the weighted sum of
the utility functions with nonnegative weights:

ϕ =
∑
i=1

xiUi, xi > 0 ∀i. (4)

is diagonally strictly concave, this implies that the Nash
equilibrium point is unique. The notion of diagonal strict
concavity means that an individual user has more control
over its utility function than the other users have on it, and
is proven using the pseudo-gradient of the weighted sum of
utility functions [24].

Fixed-Price Game: Considering some fixed price policy,
a Nash equilibrium in QoS is formally defined as:

Definition 1: A QoS vector q∗ = (q∗1 , .., q
∗
N ) is a

Nash equilibrium of the NPQG : G = [N , {Pi, Qi}, {Ui(.)}]
if, for every i ∈ N , Ui(q

∗
i , q∗

−i) ≥ Ui(q
′
i, q∗

−i) for all q′i ∈ Qi.

Theorem 1: A Nash equilibrium in terms of QoS for game
G = [N , {Pi, Qi}, {Ui(.)}] exists and is unique.

Proof: To prove existence, we note that each SP’s strategy
space Qi is defined by all QoSs in the closed interval bounded
by the minimum and maximum QoSs. Thus, the joint strategy
space Q is a nonempty, convex, and compact subset of the
Euclidean space R

N . In addition, the utility functions are
concave with respect to QoSs as can be seen from the second
derivative test:

∂2Ui(p, q)
∂q2i

= −2ϑi < 0, ∀i ∈ N , (5)

which ensures existence of a Nash equilibrium.
In order to prove uniqueness, we follow, [24], and define

the weighted sum of user utility functions.

ϕ(q, x) =
N∑
i=1

xiUi(qi, q−i), (6)

The pseudo-gradient of (6) is given by:

g(q, x) =
[
x1∇U1(q1, q−1), ..., xN∇UN (qN , q−N )

]T
(7)

The Jacobian matrix J of the pseudo-gradient (w.r.t. q) is
written

J =

⎛
⎜⎜⎜⎜⎜⎝

x1
∂2U1

∂q21
x1

∂2U1

∂q1∂q2
· · · x1

∂2U1

∂q1∂qN

x2
∂2U2

∂q2∂q1
x2

∂2U2

∂q22
· · · x2

∂2U2

∂q2∂qN
...

...
. . .

...
xN

∂2UN

∂qN∂q1
xN

∂2UN

∂qN∂q2
· · · xN

∂2UN

∂q2N

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝
−2x1ϑ1 0 · · · 0

0 −2x2ϑ2 · · · 0
...

...
. . .

...
0 0 · · · −2xNϑN

⎞
⎟⎟⎟⎠ .

Thus, J is a diagonal matrix with negative diagonal elements.
This implies that J is negative definite. Henceforth [J+ JT ] is
also negative definite, and according to Theorem (6) in [24],
the weighted sum of the utility functions ϕ(q, x) is diagonally
strictly concave. Thus the fixed-price Nash equilibrium point

q∗i = arg max
qi∈Qi

Ui(qi, q∗
−i), ∀i ∈ N . (8)

is unique.

Fixed-QoS Game: When fixing the QoS, a Nash
equilibrium in terms of price is formally defined as:

Definition 2: A price vector p∗ = (p∗1, .., p
∗
N ) is a

Nash equilibrium of the NPQG : G = [N , {Pi, Qi}, {Ui(.)}]
if, for every i ∈ N , Ui(p

∗
i , p∗

−i) ≥ Ui(p
′
i, p∗

−i) for all p′i ∈ Pi.

Theorem 2: A Nash equilibrium in terms of price for the
game G = [N , {Pi, Qi}, {Ui(.)}] exists and is unique.

Proof: To prove existence, we note that each SP’s strategy
space Pi is defined by all prices in the closed interval bounded
by the minimum and maximum prices. Thus, the joint strategy
space P is a nonempty, convex, and compact subset of the
Euclidean space R

N . In addition, the utility functions are
concave with respect to prices as can be seen from the second
derivative test:

∂2Ui(p, q)
∂p2i

= −2αi
i < 0, ∀i ∈ N , (9)

which ensures existence of a Nash equilibrium.
To prove uniqueness, we define now the weighted sum of

user utility functions

φ(p, x) =
N∑
i=1

xiUi(pi, p−i), (10)

the pseudo-gradient of this later is given by

g(p, x) =
[
x1∇U1(p1, p−1), ..., xN∇UN (pN , p−N )

]T
. (11)

In order to show that φ(p, x) is diagonally strictly concave
in this case we use the following lemma proved in [12].

Lemma 1: If each Ui(p) is a strictly concave function in pi,
each Ui(p) is convex in p−i and there is some x > 0 such that
φ(p, x) is concave in p, then [J(p, x) + JT (p, x)] is negative
definite, where J(p, x) is the Jacobian of g(p, x).

From (9), we know that Ui(p) is strictly concave in pi.
Further

∂2Ui

∂p2j
= 0, ∀i �= j,

which implies that Ui(p) is convex in p−i as well. Also, we
have that

∂2φ(p, x)
∂p2i

= xi

∂2Ui(pi, p−i)

∂p2i
+

N∑
j �=i

xj

∂2Uj(pi, p−i)

∂p2i

= −2xiα
i
i < 0, ∀i,
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then φ(p, x) is concave in pi and from Lemma 1 we have that
[J(p, x)+JT (p, x)] is negative definite. Thus the weighted sum
of utility functions φ(p, x) is diagonally strictly concave. The
fixed-QoS Nash equilibrium point is then unique and is given
by

p∗i = arg max
pi∈Pi

Ui(pi, p∗
−i), ∀i ∈ N . (12)

B. Joint Price and QoS Game

The utility functions Ui(p, q), ∀i ∈ N , are concave
respectively w.r.t. qi and pi. So, for all, i ∈ N , the QoS
and price conditions which maximizes the utility given in (2)
are respectively:

{
∂Ui(p,q)

∂qi
= 0

∂Ui(p,q)
∂pi

= 0
(13)

Thus, the computation of Nash Equilibrium can be performed
by solving latter system.

C. Social Welfare and Price of Anarchy

The concept of social welfare [20] or total surplus [25] is
defined as the sum of the utilities of all agents in the systems
(i.e. Providers). It is well known in game theory that agent
selfishness, such as in a Nash equilibrium, does not lead in
general to a socially efficient situation. As a measure of the
loss of efficiency due to the divergence of user interests, we
use the Price of Anarchy (PoA) [23], this latter is a measure
of the loss of efficiency due to actors’ selfishness. This loss
has been defined in [23] as the worst-case ratio comparing
the global efficiency measure (that has to be chosen) at an
outcome of the noncooperative game played among actors,
to the optimal value of that efficiency measure. A PoA close
to 1 indicates that the equilibrium is approximately socially
optimal, and thus the consequences of selfish behavior are
relatively benign. The term Price of Anarchy was first used by
Koutsoupias and Papadimitriou [23] but the idea of measuring
inefficiency of equilibrium is older. The concept in its current
form was designed to be the analogue of the "approximation
ratio" in Approximation Algorithms or the "competitive ratio"
in Online Algorithms. As in [14], we measure the loss of
efficiency due to actors’ selfishness as the quotient between
the social welfare obtained at the Nash equilibrium and the
maximum value of the social welfare:

PoA =
minp,q WNE(p, q)
maxp,q W (p, q)

(14)

where W (p, q) =
N∑
i=1

Ui(p, q) is a welfare function and

WNE(p, q) =
N∑
i=1

Ui(p∗, q∗) is a sum of utilities of all actors

at Nash Equilibrium.

IV. GENETIC ALGORITHM LEARNING

Genetic Algorithms (GAs), developed by Holland [16] and
his student Goldberg [11], are based on the mechanics of
natural evolution and natural genetics. GAs differ from usual
inversion algorithms because they do not require a starting
value. The GAs use a survival-of-the-fittest scheme with
a random organized search to find the best solution to a
problem. Solve an optimization problem is find the optimum
of a function from a finite number of choices, often very
large. The practical applications are numerous, whether in
the field of industrial production, transport or economics
- wherever there is need to minimize or maximize digital
functions in systems simultaneously operate a large number
of parameters. Algorithm (1) represents the genetic algorithm
used for learning the problem studied in this work.

Algorithm 1 Genetic Algorithm learning for Nash Equilibrium
on Price-QoS Competition.

1- Initialize price and QoS vectors p and q randomly;
2- Repeat:

• For each service provider i ∈ N ( Maximizing his
utility)
a) Create an initial population;
b) Repeat:

i) Selection;
ii) Crossover;

iii) Mutation.
c) Verify whether end condition is met.

3- Until stabilization of prices and service qualities.

In the following, we describe each step mentioned in
Algorithm (1).

A. Coding of Individuals and Initial Population

Coding or chromosomal representation is a way to encode
the solutions to a problem or individuals. Choosing an
encoding must take into account the complexity of the
coding/decoding process that can slow the calculations
and considerably influence the convergence of the GA.
Historically, the encoding used by the GAs was in the form of
bit strings containing all the information needed to describe a
point in the state space. However, this type of coding is not
always good [28]. GAs using real vectors avoid these problems
by keeping the variables of the problem in the coding of the
population element without going through the intermediate
binary encoding [28]. The structure of the problem is stored
in the coding. Our utility function is described in (2). For the
problem of Nash equilibrium, we try to find the pair (pi, qi)
that maximizes the utility function of a given SP-i, knowing
a priori the other couples (pj , qj), j �= i for his competitors
SPs. Each individual is represented by a pair (p, q), such as
p ∈ [p, p] and q ∈ [q, q]. In order to build an initial population,
we randomly generate a number Np of individuals belonging
to the state space [p, p]× [q, q].
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B. Selection

This operation is based on the principle of adaptation of
each individual in a population to its environment, according to
the theory of natural selection introduced by Charles Darwin.
Thus, only the fittest individuals to meet certain criteria will
be selected to survive and reproduce. The evaluation function
of adequacy of individuals evaluates each chromosome of the
population, and only those whose quality is sufficient will be
kept from one generation to another. Other individuals will
take the place of the worst. The selection of each individual
k belonging to the population depends on its probability PSk

called probability of selection. In the case of a maximization
problem (finding a maximum of the adaptation function, which
is the case in this paper), PSk is given by:

PSk =
Ui (pk, qk)

Np∑
j=1

Ui(pj , qj)

(15)

C. Crossover

The crossing is to combine any two individuals (called
parents) to come out two other individuals (called children).
The crossover operator does not act on all the pairs of
individuals of the population. An individual has a chance to
participate in a cross, denoted Pc (often caught between 0.8
and 1). At this level, we use an arithmetical crossover [13].
Let the two chromosomes of the current population be C1 and
C2. We obtain both descendants of C1 and C2 by:{

C ′1 = r ∗ C1 + (1− r) ∗ C2
C ′2 = (1− r) ∗ C1 + r ∗ C2

(16)

where r is the random number generated between 0 to 1.

D. Mutation

A mutation is a random modification of a parameter (gene)
used to ensure variability in the evolutionary process. A
probability of mutation is defined, Pm, usually chosen to be
between 0.0001 and 0.1. Should mutation occur, a non-uniform
mutation [21] is performed. One of the parameters is modified
as follows, after a flip from an unbiased coin:

Ck =

{
Ck + δ(UB − Ck)
Ck − δ(Ck − LB)

(17)

where UB is the upper bound of the parameter being mutated
and LB is the lower bound. The delta function is defined as:

δ(y) = y[r(1− t/T )B ] (18)

where r is a random number between 0 and 1, t is the
current generation, T is the maximum generation, and B is
a parameter that determines the degree of dependence on the
actual generation (usually between 1 and 5). From (18) it can
be seen that the amplitude of the mutation decreases as the
number of generations increases. This kind of mutation is
called non-uniform.

V. NUMERICAL RESULTS AND DISCUSSIONS

To clarify and show how to take advantage from our
theoretical study, we suggest to study numerically the market
share game while considering the genetic algorithm described
in the previous section and expressions of demand as well
as utility functions of SPs. Hence, we consider a system with
three SPs seeking to maximize their respective revenues. Table
I represents the system parameter values considered in this
numerical study.

TABLE I
SYSTEM PARAMETERS USED FOR NUMERICAL EXAMPLES

α1
1 = α2

2 = α3
3 αi

j , i �= j β1
1 = β2

2 = β3
3 βi

j , i �= j

0.7 0.15 0.7 0.15

D1
0 D2

0 D3
0 ϑ1 = ϑ2 = ϑ3

350 300 250 20

p1 = p2 = p3 p1, p2, p3 q1 = q2 = q3 q1, q2, q3
100 500 0 10

Figs. 1 and 2 present respectively curves of the convergence
to Nash Equilibrium Price and to Nash Equilibrium QoS. It is
clear that the genetic algorithm converges to the unique Nash
equilibrium price and QoS. We also remark that the speed of
convergence is relatively high (around 7 rounds are enough to
converge to the joint price and QoS equilibrium).

1 2 3 4 5 6 7 8
100

150

200

250

300

350

Time���

P
ri
ce

SP−1
SP−2
SP−3

Fig. 1 Price game: Convergence to the Price Nash
equilibrium

1 2 3 4 5 6 7 8
1

2

3

4

5

6

Time���

Q
o
S

SP−1
SP−2
SP−3

Fig. 2 QoS game: Convergence to the Price Nash
equilibrium

Next we plot in Figs. 3 and 4, respectively, the interplay
of bandwidth cost (ϑi, i ∈ {1, 2, 3} on the price and QoS
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at Nash equilibrium, for both SPs that we consider in this
example. On one hand, we note that the equilibrium price
for both SPs is increasing with respect to the bandwidth cost.
On the other hand, we note that the equilibrium QoS for all
SPs is decreasing with the bandwidth cost. When the cost of
bandwidth decided by the network owner is cheaper, the SPs
invest for more bandwidth, so as to offer better QoS and an
attractive price.

10 20 30 40 50 60 70 80 90 100
240

260

280

300

320

340

360

380

Cost per unit of requested bandwidth: �����������	

E
q
u
ili

b
ri
u
m

 P
ri
ce

SP−1: Price p1 at 
qulibrium
SP−2: Price p2 at 
qulibrium
SP−3: Price p3 at 
qulibrium

Fig. 3 Equilibrium Prices w.r.t cost per unit of requested
bandwidth ϑi

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

Cost per unit of requested bandwidth: �����������	

E
q
u
ili

b
ri
u
m

 Q
o
S

SP−1:�QoS q1 at 
qulibriu�
SP−2: QoS q2 at 
qulibrium
SP−3: QoS q3 at 
qulibrium

Fig. 4 Equilibrium QoSs w.r.t cost per unit of requested
bandwidth ϑi

In the following, we discuss the impact of the system
parameters on the system efficiency in terms of Price of
anarchy:

Influence of ϑi (cost per unit of requested bandwidth):
Fig. 5 shows the PoA variation curve as a function of the
providers’ bandwidth cost ϑi. Without loss of generality, we
assume that ϑ1 = ϑ2 = ϑ3. A special feature is that the Nash
equilibrium performs well and the loss of efficiency is only
around 8%. This result indicates that the Nash equilibrium
of this game is fair and socially efficient. Henceforth, selfish
players would not need the help of a third-part regulator
(who recommends the players the best strategy profile to
achieve their respective best outcomes) to get attracted by
the optimum social welfare. However, the network owner
can use the value of the bandwidth cost to control the
selfishness/aggressiveness of the service providers, which will

improve the whole network performance.

10 20 30 40 50 60 70 80 90 100
0.919

0.92

0.921

0.922

0.923

0.924

0.925

0.926

Cost per unit of requested bandwidth : ���������	��
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f A

na
rc

hy

Price of Anarchy

Fig. 5 Price of Anarchy as a function of cost per unit of
requested bandwidth ϑi

Influence of α (Sensitivity of SP-i to his price pi): Fig. 6
plots the variation curve of price of anarchy with respect to α
which represents the sensitivity of SP-i to his price pi. In that
figure, we first notice that the price of anarchy increases when
α increases, the fact that the price of anarchy increases with
α finds the simple intuition that increasing the sensitivity of
SPs to their prices gives more and more freedom to SPs for
optimizing the Nash equilibrium. On the other hand, when α =
α1
1 = α2

2 = α3
3 = 1, in the other word, when the sensitivity

of an SP to the price of its competitors is zero (α2
1 = α3

1 =
α1
2 = α3

2 = α1
3 = α2

3 = 0), price of anarchy converges to 1
and so the equilibrium is approximately socially optimal.
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Fig. 6 Price of Anarchy as a function of α = α1
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(Sensitivity of SP-i to his price pi)

Influence of β (Sensitivity of SP-i to his QoS qi): Fig.
7 illustrates variations of PoA as a function of, β, which is
the sensitivity of SPs to their respective own QoS. We first
notice that the loss of efficiency is around 8%. Moreover
the curve of PoA is concave, this latter mean that there are
some, β∗ < 1, which optimizes the equilibrium, (β∗ = β1

1 =
β2
2 = β3

3 = 0.76, PoA∗ = 0.925). Surprisingly, the price of
anarchy varies slightly (variation of almost 0.001). To explain
this behaviour, Figs. 8-10 depict, respectively, the curves of
equilibrium Price, equilibrium QoS and equilibrium Utility of
each SP-i. We find that the induced variation of the price is
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much higher compared to that of QoS, and subsequently, β
(Sensitivity of SPs to their QoS) has a smaller impact on the
system.
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VI. CONCLUSION

In this work, we gave a modeling competition between
different SPs who share the same telecommunications market.
For this, we have defined the function of demand for service
of each SP based on prices and service qualities guaranteed
by all SPs. We also defined the function of the utility
measuring the profit made by each SP and formulated this
problem as a non-cooperative game converging to a Nash
equilibrium strategy. We have shown by the results found by
implementing a genetic algorithm for learning this equilibrium
and clarify the equilibrium strategy of the system. Then, our
proposed algorithm finds very fast the equilibrium price and
the equilibrium QoS to be chosen by each provider. Our
scheme is different from previous approaches since it involves
two varying parameters in a simple implementation and low
complexity. Yet, we have obtained some insightful results such
as the interplay of bandwidth cost. Results found in this work
can be further extended to general network considerations,
in particular under non-neutrality perspective or non-linear
demand.
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