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 
Abstract—Well logging records can help to answer many 

questions from a wide range of special interested information and 
basic petrophysical properties to formation evaluation of oil and gas 
reservoirs. The accurate calculations of porosity in carbonate 
reservoirs are the most challenging aspects of the well logging 
analysis. Many equations have been developed over the years based 
on known physical principles or on empirically derived relationships, 
which are used to calculate porosity, estimate lithology, and water 
saturation; however these parameters are calculated from well logs by 
using modern technique in a current study. Nasiriya oil field is one of 
the giant oilfields in the Middle East, and the formation under study 
is the Mishrif carbonate formation which is the shallowest 
hydrocarbon bearing zone in this oilfield. Neurolog software was 
used to digitize the scanned copies of the available logs. 
Environmental corrections had been made as per Schlumberger charts 
2005, which supplied in the Interactive Petrophysics software. Three 
saturation models have been used to calculate water saturation of 
carbonate formations, which are simple Archie equation, Dual water 
model, and Indonesia model. Results indicate that the Mishrif 
formation consists mainly of limestone, some dolomite, and shale. 
The porosity interpretation shows that the logging tools have a good 
quality after making the environmental corrections. The average 
formation water saturation for Mishrif formation is around 0.4-
0.6.This study is provided accurate behavior of petrophysical 
properties with depth for this formation by using modern software.  
 

Keywords—Lithology, Porosity, Water Saturation, Carbonate 
Formation, Mishrif Formation.  

I. INTRODUCTION 

IVEN knowledge of the rock type, porosity can be 
determined by using different logging devices. For 

example, if a density logging tool is to be used, the rock 
matrix density must be known in order to determine the 
porosity. Likewise, using sonic log for porosity determination, 
the known parameter must be the matrix travel time and for 
neutron log, the parameter that must correspond to the rock 
type is the matrix setting for the neutron logging tool. If the 
encountered lithologies are simple or if the detailed 
information about the geology of the formation is shown, 
many problems should not arise in the determination of these 
parameters. Otherwise, the best way is to adopt the graphical 
methods if lithology is uncertain.  

Fluid flow through heterogeneous carbonate reservoirs 
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(limestone and dolomite) is a substantially different process 
from the flow through the homogeneous sandstone reservoir. 
This variation is largely cause to the fact that carbonate rocks 
tend to have a more complex pore system than sandstone [1], 
[2]. In the Middle East, Carbonate reservoirs are very 
heterogeneous in terms of rock types. Therefore, the reservoir 
should be split into layers on the basis of the dominant rock 
type in order to define average values and trends of 
petrophysical parameters in the reservoir rocks [3]. 

A Cross plot of porosity logging data has been in use since 
early 1960 [4]. Today an extremely large variety of two and 
three-dimensional cross-plots are available. There are many 
cross-plots models can be used for each formation to 
determine the lithological type, such as mono, binary and 
triple-mineral. Assuming a reservoir rock of known lithology, 
which is clean and /or shale corrected, then each porosity 
value can be explained for cross-plots type [5]. 

The density-sonic cross plot is the first cross-plot. As water-
filled porosity increases, three different loci could be traced 
out for differing travel times and matrix densities for the three 
principal matrices. A considerable confusion in the ascribed 
lithology caused by a little uncertainty in the measured pair 
(∆t-RhoB) means the contrast between the matrix endpoints is 
not a great deal. In addition, depending on the type of sonic 
transform used, there is a large difference as well [6], [7]. 

The density log is a continuous record of a formation’s bulk 
density. It is used mainly for the determination of porosity, 
and the differentiation between liquids and gasses (when used 
in combination with neutron log). When organic content is 
present, density is low. Variation of density indicates porosity 
changes. For example, low density indicates high porosity [8]. 
The second one is the combination cross-plot between neutron 
and sonic logs. For a thermal neutron porosity device, the 
travel times as a function of the apparent porosity are plotted. 
A considerable separation between limestone, dolomite, and 
sandstone appears due to the matrix effect of the neutron 
device [6]. 

One of the most controversial problems in the formation 
evaluation is the clay effect to reservoir rocks [9]. Shale is 
usually more radioactive than sand or carbonate, the gamma 
ray log and other logs can be used to calculate the volume of 
shale in a porous medium. The volume of shale expressed as a 
decimal fraction or percentage is called shale volume (Vshale ) 
[10]. The volume of clay can be calculated by two sets of 
well-logging indicators that are Single Clay Indicators and 
Double Clay Indicators; the minimum value of clay (Vclay) is 
the closest to the truth [11], [12]. 

There is always more than one fluid phase occupying the 
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pore space in a petroleum and gas reservoirs. The fluid 
saturation is the petrophysical property that describes the 
amount of each fluid type in the pore space. It is defined as the 
fraction of the pore space (VP) occupied by a fluid phase (VF) 
as: 

 

.
P

F

V

V
Saturation            (1) 

 
One of the most troublesome aspects of log analysis is the 

calculation of water saturation (Sw).There are many equations, 
and empirical correlations have been developed over the years 
to calculate the (Swi). Resistivity and Conductivity are 
common methods to calculate water saturation. In the earliest 
days of well-logging resistivity logs are the most commonly 
used measurements to determine (Sw). A high resistivity log 
reading in a porous medium can be indicated by the presence 
of hydrocarbon [13], [14]. While the principle of conductivity 
method depend on sodium cations concentration, that can be 
calculated in term of Cation Exchange Capacity (CEC), 
expressed in mille equivalents per gram of dry clay. 

The field of study is located in the north of Arabian 
platform in the Middle East between latitudes (34ᴏ80`- 34ᴏ60` 
N) and longitudes (57ᴏ50`- 60ᴏ10` E). It is anticline structure 
with northwest- southeast general trend. Three reservoir units 
contain most of the oil within the reservoir; the Yamamma, 
Nahr Umr, and Mishrif formations [15]. Mishrif formation is 
divided into two main reservoir units: the Upper Mishrif and 
the Lower Mishrif which consist mainly of limestone. This 
formation is an important reservoir unit due to rudist deposits 
[16], [17].  

In this study, the lithology, Porosity, and water saturation of 
Mishrif formation were determined using corrected well log 
data and compared with core data that obtained from NS-3 
well [18]. The accurate determination the saturation values 
with depth will improve the oil in place calculation and 
consequently detected the perforation zones. 

II. METHODOLOGY 

Cross-plot techniques are employed in the analysis of well 
logging data. A set of log data from the NS field was used as 
the base data for the research reported in this paper. Neura-
Log software V 2008.5 was used to digitize the scanned copies 
of logs in which the results as LAS files were loaded into the 
Interactive Petrophysics software (IP) where the reading 
measurements were taken as one reading per 0.1524 meters. 
The log curves are checked to be for depth with each other.  

Environmental corrections were made using the current 
Schlumberger charts (SLB, 2005) for available logs (gamma 
ray (Gr), resistivity logs (ILD and MSFL), density log 
(RHOB) and neutron log (NPHI). These charts are supplied to 
IP as the environmental correction module. Actual mud 
properties, caliper log, hydrostatic pressure and temperature 
gradient were provided for accurate corrections. Depending on 
well logging data the Interactive Petrophysics software (IP 
V3.5, 2008) had been used to calculate the porosities and 

determine the lithology cross-plots. 

III. RESULTS AND DISCUSSION 

A. Porosity  

Formation density log, sonic log or neutron log all, can 
determine the values of porosity. Other parameters such as the 
nature of the fluid in pore spaces, lithology and shaliness also 
have effects on those logs also to porosity. Generally, a 
combination of logs is used to obtain more accurate porosity 
values. The properties of the formation close to the borehole 
determine the readings of the tools. The shallowest 
investigation is carried out with a sonic log. Generally, within 
the flushed zone, neutron and density logs are affected by a 
little deeper region depending somewhat on the porosity. 

The density tool responds to the electron density of the 
material in the formation. Formation bulk density (RohB) is a 
function of matrix density, porosity, and density of fluids in 
the pores (salt water, fresh water mud, or hydrocarbons). The 
formula for calculating density-derived porosity is [6], [9]: 

 

f

B
D Roh

Roh
PhiDen





71.2

71.2         (2) 

 
where: RohB: is the bulk (matrix) density, [2.71 (gm/cc) for 
limestone, 2.87 (gm/cc) for dolomite and 2.65 (gm/cc) for 
sandstone]. Rohf: is the fluid density (gm/cc) [fresh water mud 
= 1, for salt water mud 1.1]. 

The neutron log (NPHI) is used mainly for lithology 
identification, porosity evaluation, and the differentiation 
between liquids and gasses when used in combination with 
density log. On cross-plot of neutron and density logs, pure 
shale can be recognized by the high neutron value relative to 
the density value which gives a large positive separation to the 
logs while gas stands out distinctly giving a large negative 
separation [8].  

Neutron logs are porosity logs that measure the hydrogen 
concentration in a formation. In clean formations (shale-free), 
where the pores are filled with water or oil, therefore, 
hydrogen is concentrated in the fluid-filled pores, energy loss 
can be related to the formation porosity. Whenever shale is 
part of the formation matrix, the reported neutron porosity is 
greater than the actual formation porosity [10].  

The sonic log is a porosity log that measures interval transit 
time (∆t) of a compressional sound wave traveling through the 
formation; the interval transit time depends on both lithology 
and porosity. Wyllie time-average equation may be written as 
[19]:  

 

.. log

matf

mat

tt

tt
sPhiSon




         (3) 

 
where: Φs is sonic-derived porosity, fraction, Δtma: is the 
interval transit time in the matrix [Its value is 47.6μsec/ft for 
limestone and 43.5 μsec/ft, for dolomite], Δtlog: is the interval 
transit time in the formation, μsec/ft., Δtf: is the interval transit 
time in the fluid within the formation [For freshwater mud = 
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