
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1995

Abstract—In this paper genetic based test data compression is

targeted for improving the compression ratio and for reducing the
computation time. The genetic algorithm is based on extended pattern
run-length coding. The test set contains a large number of X value
that can be effectively exploited to improve the test data
compression. In this coding method, a reference pattern is set and its
compatibility is checked. For this process, a genetic algorithm is
proposed to reduce the computation time of encoding algorithm. This
coding technique encodes the 2n compatible pattern or the inversely
compatible pattern into a single test data segment or multiple test data
segment. The experimental result shows that the compression ratio
and computation time is reduced.

Keywords—Backtracking, test data compression (TDC), x-

filling, x-propagating and genetic algorithm.

I. INTRODUCTION

ODAY’S system-on-chip (SoC) test data volume has
become huge due to the factors of design complexity and

the integration of embedded cores which in turn has resulted
in longer testing time and tester memory requirement. The
percentage of x-bit in SoCs test set is quite high and filling
these x-bit in test data will improve the compression ratio.
Therefore, the number of specified bit in the test data will
influence the efficiency of encoding bit as referred to (1). So
the x-values in the pattern should be replaced with 1’s and 0’s.

	
	 	 	

	 	 	 	 	 	
 (1)

With the advancement in semiconductor manufacturing

technology, a Very-Large-Scale-Integration (VLSI) device can
contain tens to hundreds of millions of transistors which has
led to many challenges in the manufacturing tests. In the
digital VLSI circuit design, power dissipation and testing
speed has become critical design concerns in the recent years
which is driven by the emergence of portable devices in
mobile applications. This is applicable not only to design
power but also for testing power.

In the testing process, if test vector sets are not optimized
for power, even the low power circuits dissipate more than
twice the power under test, than at normal operating condition.
This is because the large and complex chips require a huge
amount of test data and dissipate a substantial amount of
power during the test. The reason is that the consecutive input
test vectors are statistically independent which results in

K.S. Neelukumari is with the P. A. college of Engineering & Technology,
Pollachi, Tamilnadu, India (e-mail: neeluvijay@gmail.com).

K.B.Jayanthi is with the K. S. Rangasamy College of Technology,
Tiruchengode, Tamilnadu, India.(e-mail: jayanthikb@gmail.com).

increased switching activity in the circuit during testing. There
are many test parameters that should be improved in order to
reduce the test cost. These parameters include the test power,
test length (test application time), test fault coverage, and test
hardware area overhead.

Minimization of test power, test length (test application
time), test fault coverage, and test hardware area overhead in
testing of VLSI circuits is a challenging problem for the
researchers. Thus, the above factors motivated the researcher
to do research in this area. Most of these techniques are used
to enhance the design of the conventional LFSR method (or
other forms of TPGs such as cellular automata) to reduce the
transitions in the primary inputs of the Circuit Under Test
(CUT) for test-per-clock BIST (Built in Self Test) or inside
the scan-chain for scan-based BIST.

II. RELATED WORK

Various compression algorithms are employed to minimize
the area of the test pattern and also to improve efficiency
which is discussed. The efficiency equation is given by (1). In
[1], compression is achieved by encoding the most frequently
occurring blocks with short code words and the less frequently
occurring ones with long code words. Therefore, the
efficiency depends on the number of distinct blocks that are
encoded as well as on the block size. In [2], selective encoding
method is used to reduce test data volume and time for scan
testing for IP cores. This method encodes the slice of test data
that are fed at every clock to the scan chain. The proposed
coding scheme in [3] is based on Huffman coding, a statistical
data-coding method which reduces the code length for a set of
pattern. In this pattern, variable length is used as input to the
Huffman algorithm which allows an efficient manipulation of
test sets. In paper [4] PRL coding is stored in automatic test
equipment (ATE) which transfers it to each core in SOC. The
x’s value present in data set after decompression reduces the
efficiency. The paper [5] uses exactly nine code words which
are based on fixed length blocks of input test data and variable
length blocks. The algorithm proposes to minimize the volume
of data set. In [6], the test data contains do not care bits which
make the test data compression more complex. The entropy of
unspecified test data information and greedy algorithm of
fixed length symbol is used to fill the x- values. Reference [7]
proposes a new pattern run – length compression method the
encoding of which is 2| |compatible and inversely compatible.
The compression ratio is also improved and it is given by
CR% = | | 	 | | ̸| | 	100, where |TD| is the size of a
test set and |TE| is the size of the compressed test set.

An Analysis of Genetic Algorithm Based Test Data
Compression Using Modified PRL Coding

K. S. Neelukumari, K. B. Jayanthi

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1996

Reference [8] extends the pattern run – length coding which
presents a novel strategy that propagates the x’s reference
pattern. This technique improves the compression effectively.
These papers discuss the encoding algorithm which consumes
larger energy because it takes all the test pattern from the
pattern generator and then applies encoding algorithm. A
genetic algorithm is developed to reduce the time
consumption. The fitness function is calculated based on the
reference pattern which is used in the encoding algorithm.
Reference [9] proposes a genetic algorithm based on which the
test pattern is selected for FPGA based on fault coverage. This
maintains dynamic global record table (DGRT) containing a
list of test patterns with respective to the set of detected faults.
This algorithm reduces the simulation time. This paper
provides an idea on genetic algorithm that is used in the
application-dependent testing of SEUs in SRAM-FPGAs, that
takes into account SEUs in configuration bits of the FPGA.

Reference [10] proposes a new genetic algorithm by a multi
population pattern searching algorithm (MuPPetS), which uses
some of the messy GA ideas like coding and operators.
References [11] and [12] propose different methods to reduce
the time consumption for testing the SOC cores. In [13] a
genetic algorithm for test pattern generator design is presented
which composes flip – flops. The optimization includes the
search for the optimal combination of register cells type; the
presence of inverters at inputs and outputs, the test patterns
order in the generated test sequence and the bit order of test
patterns. References [14]–[17] discuss the different encoding
schemes that are used in test data compression. These papers
provide an idea on how genetic algorithm can be employed for
various testing domains.

III. PROPOSED METHODOLOGY

A. PRL Coding Technique

The original test set TD is partitioned into a set of patterns
of length k, and the last pattern is appended by x’s if its length
is less than k. The compression starts by simply retaining the
first pattern as the common pattern and using “10” or “11” to
code the next pattern that is equal to (E-case) or a complement
of (C-case), the common pattern. A“0” is used to terminate a
round when it encounters a neither equal nor complementary
pattern (N-case), which is then directly used as the next
common pattern and runs in the same way as described before.
When neither an equal nor a complementary pattern appears in
the test sequence, the process terminates and new cycle starts.

In the proposed PRL approach, the original test set TD is
partitioned in the same way as used in the PRL coding.
Similarly, the first pattern is used as the reference pattern. In
the E-case and the C-case, “0” and “10” are respectively used
to encode the next pattern. An N-case is indicated by “11”. In
both E-case and C-case, the reference pattern is updated, and
then, a back-tracing should probably be done to fill some x’s
evenly in all the previously coded patterns. Then, the reference
pattern:1) does not change in the E-case; 2) is inverted in the
C-case; and 3) is XOR-ed with the currently coded pattern in
the N-case to attain a new reference pattern, which is used to

repeat the aforementioned procedure, until all the patterns in

TD are encoded.
Consider the following test set TD of length 20. Let’s

consider the length of k as 4.

TD = x1x10xx1x0x01x01x111.

For the k value as 4, the given bits can be divided as:

 TD = x1x1 0xx1 x0x0 1x01 x111
 P1 P2 P3 P4 P5

By default, the first four bits (p1) specify the reference

pattern x1x1 which is compared with the second pattern, 0xx1.
They are equal if the leftmost x of the upper row is replaced
with “0”and the leftmost x of the lower row with “1”, so that
the second pattern is coded as “0” (E-case). Then, some x’s in
the reference pattern is filled and the updated reference pattern
01x1 is obtained, which is compared with the third pattern
x0x0.

01x1 and x0x0 are compared and they are complementary if
the leftmost x of the lower row is assigned to “1”, and the
third pattern is coded as “10”(C-case). Because the upper row
does not change when it is updated, the back-tracing skips.
Next, the reference pattern is inverted and the resulting pattern
is compared with the fourth pattern 1x01.

10x0 and 1x01 are compared and they are neither equal nor
complementary no matter how the x’s in the two patterns are
assigned, so that the fourth pattern is coded as “11”followed
by p4 (N-case). Then, the reference pattern is XOR-ed with
the fourth pattern to generate a new reference pattern. Here the
number of x’s in the resulting pattern is increased by 1. The
XOR operation brings all the x’s in the two operands to the
new pattern because any bit that is XOR-ed with x will result
in x bit, which is referred to as “x-propagation”. Now the new
pattern is compared with the last pattern 0111. Hence, 0xx1
and x111 are equal if some x’s of the two rows are assigned
properly, so that the last pattern is coded as “0” (E-case). The
upper pattern is then updated to 0111, which results in a back-
tracing x-filling that updates the fourth pattern to 1101, and
the previous reference pattern to 1010, followed by updating
other previously encoded patterns until the first pattern is
updated to 0101. In this manner, the test data is compressed
and then the compressed bits are stored in the test core. Later
the encoded data is given as the input to the decoding unit
which is the reverse process of the encoding technique.

B. Proposed Genetic Algorithm in 2n-PRL Technique

Instead of using normal ATPG, the genetic algorithm is
used to overcome the drawbacks in normal ATPG. In the
genetic algorithm, a better solution is evolved by using a
population of candidate solutions (called individuals,
creatures, or phenotypes). Each candidate solution has a set of
properties which can be mutated and altered; traditionally,
solutions are represented in binary as strings of 0s and 1s, but
other encodings are also possible. The evolution usually starts
from a population of randomly generated individuals, and is

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1997

an iterative process, where the population in each iteration is
called as generation.

In each generation, the fitness of every individual in the
population is evaluated; the fitness is usually the value of the
objective function in the optimization problem being solved.
The more fit individuals are stochastically selected from the
current population, and each individual's gene is modified to
form a new generation. The new generation of candidate
solutions is then used in the next iteration of the algorithm.
Commonly, the algorithm terminates when either a maximum
number of generations has been produced, or a satisfactory
fitness level has been reached for the population.

A typical genetic algorithm requires:
 A genetic representation of the solution domain,
 A fitness function to evaluate the solution domain.

A standard representation of each candidate solution is as an
array of bits. Arrays of other types and structures can be used
in essentially the same way. The main property that makes
these genetic representations convenient is that their parts are
easily aligned due to their fixed size, which facilitates simple
crossover operations.

1. Initialization of Genetic Algorithm

Initially many individual solutions are (usually) randomly
generated to form an initial population. The population size
depends on the nature of the problem, but typically contains
several hundreds or thousands of possible solutions.
Traditionally, the population is generated randomly, allowing
the entire range of possible solutions. In this case, all the test
pattern is considered for the population.

2.Selection

During each successive generation, a proportion of the
existing population is selected to breed a new generation.
Individual solutions are selected through a fitness-based
process, where fitter solutions are typically more likely to be
selected. Certain selection methods rate the fitness of each
solution and preferentially select the best solutions. Other
methods rate only a random sample of the population, as the
former process may be very time-consuming. The fitness
function is defined over the genetic representation and it
measures the quality of the represented solution. The fitness
function is always problem dependent. Here the fitness
function is considered as the pattern of the generated code
words. The code word which will match the given pattern is
considered as having higher fitness value.

3. The Genetic Operators and Parameters

Crossover is the main genetic operator. It consists in
splitting two chromosomes in two or more sub-sequences and
obtaining two new chromosomes by exchanging gene sub-
sequences between the two original chromosomes as shown in
Fig. 1. The place where a sub-sequence starts is called a cut-
point. More specifically, a single-point crossover is adopted
by choosing a non-uniform cut-point for each parent and
generating the descendants by swapping the segments
containing the ending clock cycles as shown in Tables I and II.

TABLE I
SINGLE POINT CROSSOVER EXAMPLE

Parent Gene sequence

Parent 1 1 0 0 1 0 0 1 0 1 0

Parent 2 0 0 1 0 1 1 0 1 1 1

Child 1 1 0 0 0 1 1 0 1 1 1

Child 2 0 0 1 1 0 0 1 0 1 0

TABLE II

DOUBLE POINT CROSSOVER EXAMPLE

Parent Gene sequence

Parent 1 1 1 0 1 0 0 1 0 0 1 0 1 1

Parent 2 0 1 0 1 1 0 0 0 1 0 1 0 1

Child 1 1 1 0 1 0 0 0 0 1 0 0 1 1

Child 2 0 1 0 1 1 0 1 0 0 1 1 0 1

The rationale for this choice is summarized in the following

considerations. With sequential logic, the output of a circuit
depends on both the current input values and the previous
inputs, starting from the initial state. Therefore, in order to
take advantage of the added benefit of a gene sequence, in
terms of number of recognized faults, the state of the circuit,
should be taken into account which is a result of all previous
inputs, i.e., the previous gene sequence. Hence, it is generally
more efficient to have a new generation chromosome which
can retain a large fraction of the previous sequence. In order to
achieve this behaviour, the following criterion is added in the
crossover operation: Random cut-points are generated via the
probability density function of an exponential distribution, i.e
f(x;λ)=λe-λx, where x is the distance of the cut point from the
end of the sequence. This distribution implies that a large
initial segment is kept unchanged from parent to child.
Consequently, the end segments that are swapped are
relatively short. The level of exploitation of the previous gene
sequences can be adjusted via parameter k.

Fig. 1 Crossover Process

The fraction of chromosomes to undergo the crossover
operation is the crossover rate (pc). The crossover operator is
applied with a probability pc on the selected pair of
individuals. When the operator is not applied, the offspring is
a pair of identical copies, or clones, of the parents. A higher
crossover rate allows a better exploration of the space of
solutions which are shown in Fig. 1. However, too high a

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1998

crossover rate causes unpromising regions of the search space
to be explored.

Mutation is an operator that produces a random alteration in
a single bit of a gene. Mutation is randomly applied. The
mutation rate, pl, is defined as the probability that an arbitrary
bit of an arbitrary gene is complemented. If it is too low, many
genes that would have been useful are never discovered, but if
it is too high, there will be much random perturbation, the off-
springs lose their resemblance to the parents, and the GA loses
the efficiency in learning from the search history.

Child 1 1 1 0 1 0 0 0 0 1 0 0 1 1
After mutation 1 1 0 1 1 0 0 0 1 0 0 1 1

Typical values of pl are in the order of 10-2. The mutation

operator is controlled by a dynamic pl which decreases
linearly between an initial value pl, and a value pl at the final
generation. With a linearly decreasing pl, the early generations
have a high probability of mutation and solutions are spread
all over the solutions space, so that most of them have a
chance to be tried. Later generations have a lower mutation
probability, so that the search is focused on the regions of the
solution space where fitter individuals are found.

4.Selection Process

A selection operator chooses a subset of chromosomes from
the current population. Various stochastic selection techniques
are available. With this method, an individual is selected with
a probability that is directly proportional to its fitness.

5. The Fitness Function

The fitness function measures the quality of the solution,
and is always problem dependent. Here the problem is

considered as the placement of the test bits. So the fitness
function is considered as the placement of test bits. So the
selection process is dependent on the fitness function and
hence the selected pattern will obey the condition which will
be easily compressed by the 2n PRL compression process.

The genetic algorithm will stop when the required number
of children produced by the algorithm in the fitness test. Now
the obtained code-word is given to the decoder unit which will
generate the efficient test sequence and the test sequence is
applied to the various benchmark circuits. By using the
genetic algorithm, around 35 patterns are generated out of
which 5 patterns which are compatible for the compression are
selected.

IV. RESULTS AND DISCUSSION

The simulations are performed in Xilinx software. The
C880 benchmark circuit is used to evaluate the algorithm.
Table III is the comparison table between PRL technique and
backtracking algorithm. The backtracking algorithm gives a
better compression ratio for the various benchmark circuits.

The compression ratio is calculated by CR% =
| | | |

*100,

where | | and | | are sizes of input data and compressed
data. Table IV shows the compression algorithm and the basic
PRL algorithm [4] under optimum k-values.

Table V shows the comparison between the other
compression algorithms. The backtracking algorithm shows
the better compression ratio. If the value of ‘k’ is increased,
the compression ratio is also increased accordingly. If the
input value is increased, the value of ‘k’ is also increased to
have better compression ratio. The comparison of compression
ratio with various algorithms is shown in Fig. 2.

TABLE III

COMPARISON TABLE FOR C- CIRCUITS

S. No. Circuit Input Bits
Compressed bit Compression ratio %

Back tracking PRL technique Back tracking PRL technique
01 C432 36 12 21 67 42
02 C499 41 13 28 68 32
03 C880 60 16 35 73 42
04 C1355 73 21 49 71 32
05 C1908 33 11 21 67 37

TABLE IV

COMPARISON TABLE FOR S- CIRCUITS

S. No. Circuit Input Bits
Compressed bit Compression ratio %

Back tracking PRL technique [4] Back tracking PRL technique [4]

01 S9234 39273 15890 18053 59.54 54.03

02 S15850 76986 20800 25760 72.98 66.54

03 S38417 164736 73134 77014 55.61 53.25

04 S38584 199104 55760 65923 71.99 66.89

05 S5378 23754 9080 10696 61.77 54.97

TABLE V

COMPARISON TABLE OF VARIOUS ALGORITHMS

 Name of the technique Input bits Compressed bits Compression ratio %

Back tracking technique 84 37 0.559 55.95

2n –PRL technique 84 49 0.416 41.6

Back tracking with pattern length of 7 125 68 0.674 67.4

XOR Based Compression 126 63 0.50 50

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:8, 2015

1999

Fig. 2 Comparisons between compressed bit and CUT

Time reduction=> By PRL technique=1000200 ps and by
Genetic algorithm=1000000ps

Table IV shows the results for genetic algorithm. It shows

that the computational time is also reduced by using the
genetic algorithm. The computation time of 200ps is reduced
on an average when the test patterns are selected by genetic
algorithm and then the proposed backtracking algorithm is
applied. By comparing the processing time between the PRL
technique and genetic algorithm, the genetic algorithm
processing time is less.

V. CONCLUSION

The genetic algorithm is proposed to improve the
compression ratio based on PRL algorithm and backtracking.
This algorithm propagates the x- value and guarantee for the
decoding. This genetic based tool for automatic test pattern
generation is used instead of pattern generation by applying
the normal TPG. Test patterns generated by the proposed tool
can be used for generating the patterns for the specified
compressing technique. Here the generated patterns are given
to the 2n- PRL decoder which results in providing a high
efficiency data decoder. The time requirement for the
execution of the algorithm is successfully reduced and the
efficiency of the algorithm is increased by selecting the most
compatible sequence.

TABLE IV

SELECTED PATTERNS FOR VARIOUS CIRCUITS

Circuit
Compression ratio%

SC [15] FDR [16] VIHC [17] Ours (genetic)

S5378 43.64 48.02 51.8 61.38

S9234 40.04 43.59 47.2 62.49

S38417 45.15 43.26 53.4 66.65

S15850 58.84 66.22 67.9 69.11

S38584 55.24 60.91 62.2 69.72

REFERENCES
[1] X.Kavousianos, E. Kalligerous and D. Nikolos, “Optimal selective

Huffman coding for test-data compression”, IEEE Trans. Comput.,
vol.56, no. 8, pp. 1146 – 1152, Aug 2007.

[2] Zhanglei Wang, Member, IEEE, and KrishnenduChakrabarty, “Test
Data Compression Using SelectiveEncoding of Scan Slices”, IEEE
Trans. on VLSI system, vol. 16, no. 11, Nov. 2008.

[3] P.T.Gonciari, B. Al-Hashimi, and N.Nicolici, “Variable – length input
Huffman coding for system-on-a-chip test”, IEEE Trans. Comput.
Aided Des.Integr. Circuits Syst., vol. 22, no. 6, pp. 783-796, Jun 2003.

[4] X.Raun and R.Katti, “A efficient data – independent technique for
compression test vectors in systems –on – a – chip”, in Proc. IEEE
comput. Soc. Annu. Symp.Emerging VLSI Technol. Archit.,
Washington, DC 2006, pp153-158.

[5] M.Tehranipoor, M.Nourani and K.Chakrabarty, “Nine-coded
compression technique for testing embedded cores in SoCs,” IEEE
Trans. VLSI Syst., vol.13, no.6, pp. 719-731, Jun.2005.

[6] Kedarnath J. Balakrishnan and NurA.Touba, “Relationship between
Entropy and Test Data Compression”, in IEEE trans. on CAD of
Integrated circuits and system, vol. 26, no.2, Feb 2007.

[7] Lung – Jen Lee, Wang – Dauh Tseng, Rung – Bin Lin, and Cheng – Ho
Chang, “2n Pattern Run-Length for Test Data Compression”, in IEEE
trans. on CAD of Integrated circuits and system, vol. 31, no.4, April
2012.

[8] Maoxiang Yi, Huaguo Liang, Lei Zhang and Wenfa Zhan, “A Novel X-
ploiting Strategy for Improving Performance of Test Data
Compression”, in IEEE Trans. on VLSI system, vol. 18, no. 02, Feb.
2010.

[9] CinziaBernardeschi, Luca Cassano, Mario G.C.A. Cimino, Andrea
Domenci, “GABES: A Genetic Algorithm Based Environment for SEU
Testing in SRAM-FPGAs”, in journal of system architecture, pp 1243 –
1254, 2013.

[10] HalinaKwasnicka and Michal Przewozniczek, “Multi population Pattern
Searching Algorithm: A New Evolutionary Method Based on the Idea
of Messy Algorithm”, IEEE Trans. on evolution computation vol. 15
No. 5, pp 715 – 734, Oct. 2011.

[11] Jervan, G. Eles, P., ZeboPeng ,Ubar, R., and Jenihhin, M., “Test time
minimization for hybrid BIST of core-based systems”, VLSI test
symposium, 2014.

[12] Jervan, G. Eles, P., ZeboPeng ,Ubar, R., and Jenihhin, M., “Hybrid
BIST time minimization for core-based systems with STUMPS
architecture”, VLSI test symposium, 2014.

[13] T. Garbolino, G. Papa, Genetic algorithm for test pattern generator
design, Applied Intelligence 32 (2) (2010) 193–204.

[14] A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan vector compression /
decompression using statistical coding,” in Proc. IEEE VLSI Test
Symp., Apr. 1999, pp. 114–121.

[15] A. Chandra and K. Chakrabarty, “System-on-a-chip test data
compression and decompression architectures based on Golomb codes,”
IEEE Trans. Computer-Aided Design, vol. 20, pp. 113–120, Mar. 2001.

[16] “Frequency-Directed Run-Length (FDR) codes with application to
system-on-a-chip test data compression,” in Proc. IEEE VLSI Test
Symp., Apr. 2001, pp. 114–121.

[17] P. T. Gonciari, B. M. Al-Hashimi, and N. Nicolici, “Variable-length
input Huffman coding for system-on-a-chip test,” IEEE Trans.
Comput.-Aided Design Integr. Circuit Syst., vol. 22, no. 6, pp. 783–796,
Jun. 2003.

0

10

20

30

40

50

Compressed bit
using Back
tracking

Compressed bit
using PRL
technique

