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Abstract—In this paper genetic based test data compression is 

targeted for improving the compression ratio and for reducing the 
computation time. The genetic algorithm is based on extended pattern 
run-length coding. The test set contains a large number of X value 
that can be effectively exploited to improve the test data 
compression. In this coding method, a reference pattern is set and its 
compatibility is checked. For this process, a genetic algorithm is 
proposed to reduce the computation time of encoding algorithm. This 
coding technique encodes the 2n compatible pattern or the inversely 
compatible pattern into a single test data segment or multiple test data 
segment. The experimental result shows that the compression ratio 
and computation time is reduced.  

 
Keywords—Backtracking, test data compression (TDC), x-

filling, x-propagating and genetic algorithm.  

I. INTRODUCTION 

ODAY’S system-on-chip (SoC) test data volume has 
become huge due to the factors of design complexity and 

the integration of embedded cores which in turn has resulted 
in longer testing time and tester memory requirement. The 
percentage of x-bit in SoCs test set is quite high and filling 
these x-bit in test data will improve the compression ratio. 
Therefore, the number of specified bit in the test data will 
influence the efficiency of encoding bit as referred to (1). So 
the x-values in the pattern should be replaced with 1’s and 0’s.  

 

	
	 	 	

	 	 	 	 	 	
     (1) 

 
With the advancement in semiconductor manufacturing 

technology, a Very-Large-Scale-Integration (VLSI) device can 
contain tens to hundreds of millions of transistors which has 
led to many challenges in the manufacturing tests. In the 
digital VLSI circuit design, power dissipation and testing 
speed has become critical design concerns in the recent years 
which is driven by the emergence of portable devices in 
mobile applications. This is applicable not only to design 
power but also for testing power. 

In the testing process, if test vector sets are not optimized 
for power, even the low power circuits dissipate more than 
twice the power under test, than at normal operating condition. 
This is because the large and complex chips require a huge 
amount of test data and dissipate a substantial amount of 
power during the test. The reason is that the consecutive input 
test vectors are statistically independent which results in 
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increased switching activity in the circuit during testing. There 
are many test parameters that should be improved in order to 
reduce the test cost. These parameters include the test power, 
test length (test application time), test fault coverage, and test 
hardware area overhead. 

Minimization of test power, test length (test application 
time), test fault coverage, and test hardware area overhead in 
testing of VLSI circuits is a challenging problem for the 
researchers. Thus, the above factors motivated the researcher 
to do research in this area. Most of these techniques are used 
to enhance the design of the conventional LFSR method (or 
other forms of TPGs such as cellular automata) to reduce the 
transitions in the primary inputs of the Circuit Under Test 
(CUT) for test-per-clock BIST (Built in Self Test) or inside 
the scan-chain for scan-based BIST. 

II. RELATED WORK 

Various compression algorithms are employed to minimize 
the area of the test pattern and also to improve efficiency 
which is discussed. The efficiency equation is given by (1). In 
[1], compression is achieved by encoding the most frequently 
occurring blocks with short code words and the less frequently 
occurring ones with long code words. Therefore, the 
efficiency depends on the number of distinct blocks that are 
encoded as well as on the block size. In [2], selective encoding 
method is used to reduce test data volume and time for scan 
testing for IP cores. This method encodes the slice of test data 
that are fed at every clock to the scan chain. The proposed 
coding scheme in [3] is based on Huffman coding, a statistical 
data-coding method which reduces the code length for a set of 
pattern. In this pattern, variable length is used as input to the 
Huffman algorithm which allows an efficient manipulation of 
test sets. In paper [4] PRL coding is stored in automatic test 
equipment (ATE) which transfers it to each core in SOC. The 
x’s value present in data set after decompression reduces the 
efficiency. The paper [5] uses exactly nine code words which 
are based on fixed length blocks of input test data and variable 
length blocks. The algorithm proposes to minimize the volume 
of data set. In [6], the test data contains do not care bits which 
make the test data compression more complex. The entropy of 
unspecified test data information and greedy algorithm of 
fixed length symbol is used to fill the x- values. Reference [7] 
proposes a new pattern run – length compression method the 
encoding of which is 2| |compatible and inversely compatible. 
The compression ratio is also improved and it is given by 
CR% = | | 	 | | ̸| | 	100, where |TD| is the size of a 
test set and |TE| is the size of the compressed test set.  
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Reference [8] extends the pattern run – length coding which 
presents a novel strategy that propagates the x’s reference 
pattern. This technique improves the compression effectively. 
These papers discuss the encoding algorithm which consumes 
larger energy because it takes all the test pattern from the 
pattern generator and then applies encoding algorithm. A 
genetic algorithm is developed to reduce the time 
consumption. The fitness function is calculated based on the 
reference pattern which is used in the encoding algorithm. 
Reference [9] proposes a genetic algorithm based on which the 
test pattern is selected for FPGA based on fault coverage. This 
maintains dynamic global record table (DGRT) containing a 
list of test patterns with respective to the set of detected faults. 
This algorithm reduces the simulation time. This paper 
provides an idea on genetic algorithm that is used in the 
application-dependent testing of SEUs in SRAM-FPGAs, that 
takes into account SEUs in configuration bits of the FPGA. 

Reference [10] proposes a new genetic algorithm by a multi 
population pattern searching algorithm (MuPPetS), which uses 
some of the messy GA ideas like coding and operators. 
References [11] and [12] propose different methods to reduce 
the time consumption for testing the SOC cores. In [13] a 
genetic algorithm for test pattern generator design is presented 
which composes flip – flops. The optimization includes the 
search for the optimal combination of register cells type; the 
presence of inverters at inputs and outputs, the test patterns 
order in the generated test sequence and the bit order of test 
patterns. References [14]–[17] discuss the different encoding 
schemes that are used in test data compression. These papers 
provide an idea on how genetic algorithm can be employed for 
various testing domains.  

III. PROPOSED METHODOLOGY 

A. PRL Coding Technique  

The original test set TD is partitioned into a set of patterns 
of length k, and the last pattern is appended by x’s if its length 
is less than k. The compression starts by simply retaining the 
first pattern as the common pattern and using “10” or “11” to 
code the next pattern that is equal to (E-case) or a complement 
of (C-case), the common pattern. A“0” is used to terminate a 
round when it encounters a neither equal nor complementary 
pattern (N-case), which is then directly used as the next 
common pattern and runs in the same way as described before. 
When neither an equal nor a complementary pattern appears in 
the test sequence, the process terminates and new cycle starts.  

In the proposed PRL approach, the original test set TD is 
partitioned in the same way as used in the PRL coding. 
Similarly, the first pattern is used as the reference pattern. In 
the E-case and the C-case, “0” and “10” are respectively used 
to encode the next pattern. An N-case is indicated by “11”. In 
both E-case and C-case, the reference pattern is updated, and 
then, a back-tracing should probably be done to fill some x’s 
evenly in all the previously coded patterns. Then, the reference 
pattern:1) does not change in the E-case; 2) is inverted in the 
C-case; and 3) is XOR-ed with the currently coded pattern in 
the N-case to attain a new reference pattern, which is used to 

repeat the aforementioned procedure, until all the patterns in 

TD are encoded. 
Consider the following test set TD of length 20. Let’s 

consider the length of k as 4. 
 

TD = x1x10xx1x0x01x01x111. 
 
For the k value as 4, the given bits can be divided as: 
 
          TD = x1x1   0xx1   x0x0   1x01   x111  
                     P1       P2       P3      P4       P5    
 
By default, the first four bits (p1) specify the reference 

pattern x1x1 which is compared with the second pattern, 0xx1. 
They are equal if the leftmost x of the upper row is replaced 
with “0”and the leftmost x of the lower row with “1”, so that 
the second pattern is coded as “0” (E-case). Then, some x’s in 
the reference pattern is filled and the updated reference pattern 
01x1 is obtained, which is compared with the third pattern 
x0x0. 

01x1 and x0x0 are compared and they are complementary if 
the leftmost x of the lower row is assigned to “1”, and the 
third pattern is coded as “10”(C-case). Because the upper row 
does not change when it is updated, the back-tracing skips. 
Next, the reference pattern is inverted and the resulting pattern 
is compared with the fourth pattern 1x01. 

10x0 and 1x01 are compared and they are neither equal nor 
complementary no matter how the x’s in the two patterns are 
assigned, so that the fourth pattern is coded as “11”followed 
by p4 (N-case). Then, the reference pattern is XOR-ed with 
the fourth pattern to generate a new reference pattern. Here the 
number of x’s in the resulting pattern is increased by 1. The 
XOR operation brings all the x’s in the two operands to the 
new pattern because any bit that is XOR-ed with x will result 
in x bit, which is referred to as “x-propagation”. Now the new 
pattern is compared with the last pattern 0111. Hence, 0xx1 
and x111 are equal if some x’s of the two rows are assigned 
properly, so that the last pattern is coded as “0” (E-case). The 
upper pattern is then updated to 0111, which results in a back-
tracing x-filling that updates the fourth pattern to 1101, and 
the previous reference pattern to 1010, followed by updating 
other previously encoded patterns until the first pattern is 
updated to 0101. In this manner, the test data is compressed 
and then the compressed bits are stored in the test core. Later 
the encoded data is given as the input to the decoding unit 
which is the reverse process of the encoding technique. 

B. Proposed Genetic Algorithm in 2n-PRL Technique 

Instead of using normal ATPG, the genetic algorithm is 
used to overcome the drawbacks in normal ATPG. In the 
genetic algorithm, a better solution is evolved by using a 
population of candidate solutions (called individuals, 
creatures, or phenotypes). Each candidate solution has a set of 
properties which can be mutated and altered; traditionally, 
solutions are represented in binary as strings of 0s and 1s, but 
other encodings are also possible. The evolution usually starts 
from a population of randomly generated individuals, and is 
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an iterative process, where the population in each iteration is 
called as generation.  

In each generation, the fitness of every individual in the 
population is evaluated; the fitness is usually the value of the 
objective function in the optimization problem being solved. 
The more fit individuals are stochastically selected from the 
current population, and each individual's gene is modified to 
form a new generation. The new generation of candidate 
solutions is then used in the next iteration of the algorithm. 
Commonly, the algorithm terminates when either a maximum 
number of generations has been produced, or a satisfactory 
fitness level has been reached for the population. 

A typical genetic algorithm requires: 
 A genetic representation of the solution domain, 
 A fitness function to evaluate the solution domain. 

A standard representation of each candidate solution is as an 
array of bits. Arrays of other types and structures can be used 
in essentially the same way. The main property that makes 
these genetic representations convenient is that their parts are 
easily aligned due to their fixed size, which facilitates simple 
crossover operations.  

1. Initialization of Genetic Algorithm 

Initially many individual solutions are (usually) randomly 
generated to form an initial population. The population size 
depends on the nature of the problem, but typically contains 
several hundreds or thousands of possible solutions. 
Traditionally, the population is generated randomly, allowing 
the entire range of possible solutions. In this case, all the test 
pattern is considered for the population.  

2.Selection  

During each successive generation, a proportion of the 
existing population is selected to breed a new generation. 
Individual solutions are selected through a fitness-based 
process, where fitter solutions are typically more likely to be 
selected. Certain selection methods rate the fitness of each 
solution and preferentially select the best solutions. Other 
methods rate only a random sample of the population, as the 
former process may be very time-consuming. The fitness 
function is defined over the genetic representation and it 
measures the quality of the represented solution. The fitness 
function is always problem dependent. Here the fitness 
function is considered as the pattern of the generated code 
words. The code word which will match the given pattern is 
considered as having higher fitness value. 

3. The Genetic Operators and Parameters 

Crossover is the main genetic operator. It consists in 
splitting two chromosomes in two or more sub-sequences and 
obtaining two new chromosomes by exchanging gene sub-
sequences between the two original chromosomes as shown in 
Fig. 1. The place where a sub-sequence starts is called a cut-
point. More specifically, a single-point crossover is adopted 
by choosing a non-uniform cut-point for each parent and 
generating the descendants by swapping the segments 
containing the ending clock cycles as shown in Tables I and II. 

 

TABLE I 
SINGLE POINT CROSSOVER EXAMPLE 

Parent   Gene sequence  

Parent 1        1 0 0     1 0 0 1 0 1 0 

Parent 2          0 0 1     0 1 1 0 1 1 1 

Child 1          1 0 0     0 1 1 0 1 1 1 

Child 2          0 0 1     1 0 0 1 0 1 0 

 
TABLE II 

DOUBLE POINT CROSSOVER EXAMPLE 

Parent   Gene sequence  

Parent 1      1 1 0 1 0 0     1 0 0 1     0 1 1 

Parent 2      0 1 0 1 1 0     0 0 1 0     1 0 1 

Child 1       1 1 0 1 0 0     0 0 1 0     0 1 1 

Child 2       0 1 0 1 1 0     1 0 0 1     1 0 1 

 
The rationale for this choice is summarized in the following 

considerations. With sequential logic, the output of a circuit 
depends on both the current input values and the previous 
inputs, starting from the initial state. Therefore, in order to 
take advantage of the added benefit of a gene sequence, in 
terms of number of recognized faults, the state of the circuit, 
should be taken into account which is a result of all previous 
inputs, i.e., the previous gene sequence. Hence, it is generally 
more efficient to have a new generation chromosome which 
can retain a large fraction of the previous sequence. In order to 
achieve this behaviour, the following criterion is added in the 
crossover operation: Random cut-points are generated via the 
probability density function of an exponential distribution, i.e 
f(x;λ)=λe-λx, where x is the distance of the cut point from the 
end of the sequence. This distribution implies that a large 
initial segment is kept unchanged from parent to child. 
Consequently, the end segments that are swapped are 
relatively short. The level of exploitation of the previous gene 
sequences can be adjusted via parameter k.  

 

 

Fig. 1 Crossover Process 
 

The fraction of chromosomes to undergo the crossover 
operation is the crossover rate (pc). The crossover operator is 
applied with a probability pc on the selected pair of 
individuals. When the operator is not applied, the offspring is 
a pair of identical copies, or clones, of the parents. A higher 
crossover rate allows a better exploration of the space of 
solutions which are shown in Fig. 1. However, too high a 
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crossover rate causes unpromising regions of the search space 
to be explored. 

Mutation is an operator that produces a random alteration in 
a single bit of a gene. Mutation is randomly applied. The 
mutation rate, pl, is defined as the probability that an arbitrary 
bit of an arbitrary gene is complemented. If it is too low, many 
genes that would have been useful are never discovered, but if 
it is too high, there will be much random perturbation, the off-
springs lose their resemblance to the parents, and the GA loses 
the efficiency in learning from the search history.  

 
Child 1               1 1 0 1 0 0 0 0 1 0 0 1 1 
After mutation   1 1 0 1 1 0 0 0 1 0 0 1 1 
 
Typical values of pl are in the order of 10-2. The mutation 

operator is controlled by a dynamic pl which decreases 
linearly between an initial value pl, and a value pl at the final 
generation. With a linearly decreasing pl, the early generations 
have a high probability of mutation and solutions are spread 
all over the solutions space, so that most of them have a 
chance to be tried. Later generations have a lower mutation 
probability, so that the search is focused on the regions of the 
solution space where fitter individuals are found. 

4.Selection Process 

A selection operator chooses a subset of chromosomes from 
the current population. Various stochastic selection techniques 
are available. With this method, an individual is selected with 
a probability that is directly proportional to its fitness. 

5. The Fitness Function 

The fitness function measures the quality of the solution, 
and is always problem dependent. Here the problem is 

considered as the placement of the test bits. So the fitness 
function is considered as the placement of test bits. So the 
selection process is dependent on the fitness function and 
hence the selected pattern will obey the condition which will 
be easily compressed by the 2n PRL compression process. 

The genetic algorithm will stop when the required number 
of children produced by the algorithm in the fitness test. Now 
the obtained code-word is given to the decoder unit which will 
generate the efficient test sequence and the test sequence is 
applied to the various benchmark circuits. By using the 
genetic algorithm, around 35 patterns are generated out of 
which 5 patterns which are compatible for the compression are 
selected. 

IV. RESULTS AND DISCUSSION 

The simulations are performed in Xilinx software. The 
C880 benchmark circuit is used to evaluate the algorithm. 
Table III is the comparison table between PRL technique and 
backtracking algorithm. The backtracking algorithm gives a 
better compression ratio for the various benchmark circuits. 

The compression ratio is calculated by CR% = 
| | | |

*100, 

where | | and | | are sizes of input data and compressed 
data. Table IV shows the compression algorithm and the basic 
PRL algorithm [4] under optimum k-values. 

Table V shows the comparison between the other 
compression algorithms. The backtracking algorithm shows 
the better compression ratio. If the value of ‘k’ is increased, 
the compression ratio is also increased accordingly. If the 
input value is increased, the value of ‘k’ is also increased to 
have better compression ratio. The comparison of compression 
ratio with various algorithms is shown in Fig. 2.  

 
TABLE III 

COMPARISON TABLE FOR C- CIRCUITS 

S. No. Circuit Input Bits 
Compressed bit Compression ratio % 

Back tracking PRL technique Back tracking PRL technique 
01 C432 36 12 21 67 42 
02 C499 41 13 28 68 32 
03 C880 60 16 35 73 42 
04 C1355 73 21 49 71 32 
05 C1908 33 11 21 67 37 

 
TABLE IV 

COMPARISON TABLE FOR S- CIRCUITS 

S. No. Circuit Input Bits 
Compressed bit Compression ratio % 

Back tracking PRL technique [4] Back tracking PRL technique [4] 

01 S9234 39273 15890 18053 59.54 54.03 

02 S15850 76986 20800 25760 72.98 66.54 

03 S38417 164736 73134 77014 55.61 53.25 

04 S38584 199104 55760 65923 71.99 66.89 

05 S5378 23754 9080 10696 61.77 54.97 

 
TABLE V 

COMPARISON TABLE OF VARIOUS ALGORITHMS 

  Name of the technique Input bits Compressed bits Compression ratio % 

Back tracking technique 84 37 0.559 55.95 

2n –PRL technique 84 49 0.416 41.6 

Back tracking with pattern length of 7 125 68 0.674 67.4 

XOR Based Compression 126 63 0.50 50 
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Fig. 2 Comparisons between compressed bit and CUT  
 

Time reduction=> By PRL technique=1000200 ps and by 
Genetic algorithm=1000000ps 

 
Table IV shows the results for genetic algorithm. It shows 

that the computational time is also reduced by using the 
genetic algorithm. The computation time of 200ps is reduced 
on an average when the test patterns are selected by genetic 
algorithm and then the proposed backtracking algorithm is 
applied. By comparing the processing time between the PRL 
technique and genetic algorithm, the genetic algorithm 
processing time is less.  

V. CONCLUSION 

The genetic algorithm is proposed to improve the 
compression ratio based on PRL algorithm and backtracking. 
This algorithm propagates the x- value and guarantee for the 
decoding. This genetic based tool for automatic test pattern 
generation is used instead of pattern generation by applying 
the normal TPG. Test patterns generated by the proposed tool 
can be used for generating the patterns for the specified 
compressing technique. Here the generated patterns are given 
to the 2n- PRL decoder which results in providing a high 
efficiency data decoder. The time requirement for the 
execution of the algorithm is successfully reduced and the 
efficiency of the algorithm is increased by selecting the most 
compatible sequence. 

 
TABLE IV 

SELECTED PATTERNS FOR VARIOUS CIRCUITS 

Circuit 
Compression ratio% 

SC [15] FDR [16] VIHC [17] Ours (genetic) 

S5378 43.64 48.02 51.8 61.38 

S9234 40.04 43.59 47.2 62.49 

S38417 45.15 43.26 53.4 66.65 

S15850 58.84 66.22 67.9 69.11 

S38584 55.24 60.91 62.2 69.72 
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