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  
Abstract---The steady flow of a second order fluid through 

constricted tube with slip velocity at wall is modeled and analyzed 
theoretically. The governing equations are simplified by implying no 
slip in radial direction. Based on Karman Pohlhausen procedure 
polynomial solution for axial velocity profile is presented. 
Expressions for pressure gradient, shear stress, separation and 
reattachment points, and radial velocity are also calculated. The 
effect of slip and no slip velocity on magnitude velocity, shear stress, 
and pressure gradient are discussed and depicted graphically. It is 
noted that when Reynolds number increases magnitude velocity of 
the fluid decreases in both slip and no slip conditions. It is also found 
that the wall shear stress, separation, and reattachment points are 
strongly affected by Reynolds number. 

 
Keywords---Approximate solution, constricted tube, non-

Newtonian fluids, Reynolds number.  

I. INTRODUCTION 

STENOSIS, localized narrowing in an arterial system of 
mammals, disturb the normal pattern of blood flow 

through the artery and causes arterial disease. Smoking, high 
cholesterol levels, high blood pressure and diabetes play a 
momentous character in the progression and development of 
this disorder. Flow properties of blood such as pressure, wall 
shear stress, vortices, and turbulence may have potential 
medical significance. In the vicinity of a stenosis, a brief 
knowledge of rheological and dynamical characteristics of the 
fluid flow may help to understand the complications of 
constrictions [1], [2]. These include the progression of a 
thrombus, the hardening, weakening, swelling, and tissues 
growth into the arteries. Once an arterial abrasion has 
developed, a significant change in fluid characteristics can be 
seen [3]. 

Many researchers have pointed out that the major cause of 
intravascular plaques is faulty lipid metabolism. As 
intravascular abrasions are commonly found in the segments 
of curved arteries, at the entrance of branching vessels, or 
generally at locations of abrupt changes in geometry which 
should take into account the flow characteristics of the blood. 
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Due to the flow separation from the artery wall, static zones 
occur in the arterial system [4]. They [4] indicate that the fluid 
flows with points of inflexion in the velocity profiles and 
reserved flow in some cases. The considerable complexity of 
prosthetic heart valve is the formation of thrombus. Numerous 
researchers have anticipated that the formation of thrombosis 
near the valve is the contribution of the static zone. Therefore, 
it seems objective to venture that if static zone occur near 
constriction, they may well contribute to the problems of 
arthrosclerosis. 

In the branch of biomechanics, the study of fluid flow in 
obstructed tube is always a challenging problem though the 
importance of hydrodynamic has been reported for many 
years. Young [5] has studied in detail the flow in a mildly 
constricted tube. Forrester and Young [6] extended this work 
to embrace the effects of flow separation on a mild 
constriction. The study of flow in constricted tubes was 
analyzed numerically by [7]. Many physicians, researchers, 
and scientists have made their efforts to understand the 
mechanics of fluid flow in constricted arteries considering the 
blood as Newtonian fluid. The blood, however, only under 
certain conditions behaves like a Newtonian fluid, of course, 
at low shear stress it becomes as a non-Newtonian fluid [8]. 
The blood, in the larger arteries where the constriction 
commonly occurs, treated as incompressible Newtonian fluid. 
They [4] proposed that the atherosclerosis plaque 
(constriction) is caused by intravascular clotting. For the first 
time Fry [9] reported the endothelial changes by inserting a 
plug in the thoratic aorta of mongrel dogs, which abrupt the 
blood flow. Further, he obtained theoretical results for 
unsteady, axisymmetric, incompressible Newtonian fluid flow 
numerically and compared with the experimental one. Young 
[5] reported the time dependent constriction in tube for 
viscous flow. Forrester and Young [6] developed theoretical 
and experimental results for the blood flow through 
constricted tube. A primary goal of their research was to 
predict analytically the separation of flow at Reynolds number 
in constricted tube. For analytical results, they use an integral 
method. An experiment was performed to check the theory 
which was valid for water and glycerol-water solution 
(viscous fluid) but not valid for the whole blood, as at low 
shear rate blood behaves as a non-Newtonian fluid. Further 
results were obtained for pressure drop, separation, and 
reattachment regions and compared with the theoretical one. 
Morgan and Young [10] investigated a simple and 
approximate solution of the fluid flowing through an 
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and ׏ଶ is the Laplacian parameter, ෨݄ is the generalized 
pressure.  

According to the geometry of the problem the boundary 
conditions are: 
 

෤ݑ ൌ ෥ݓ ൌ ݎ̃			ݐܽ				0 ൌ ܴሺ̃ݖሻ, 
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ൌ ݎ̃			ݐܽ			0 ൌ 0.                     (14) 

 
 For convenience introducing the dimensionless variables; 
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The non-dimensional form of cosine shape constriction 

profile is: 
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where ߜ∗ ൌ ߜ
ܴ଴ൗ . Exact solution of (19) cannot be obtained. In 

order to find the approximate solution we assume fourth order 

polynomial which is called Karman-Pohlhausen approach 
[21]. Therefore; 
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where U  is the centerline velocity and A, B, C, D and E are 
undetermined coefficients which can be evaluated from the 
following five conditions: 
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The slip boundary conditions of velocity ݒ௦ at the wall and 

centerline velocity U are given by (23) and (24), condition 
(25) is a simple definition, and condition (26) is obtained from 
(18). It is assumed that at ݎ ൌ 0 the velocity profile at the 
center of the tube is parabolic (negligible effect of the slip 

velocity ݒ௦) ݓ ൌ ܷ ቂ1 െ
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ቃ, so that the second derivative of ݓ 
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We note that ߣ is the function of z only, since R, U and h 

depend only on z. In (29), U and h(z) are unknowns. If Q is the 
flux through the tube, then 
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and centerline velocity U can also be written as 
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For constant volume flux, i.e. ܳ ൌ  we have ,ߨ
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In order to obtain a closed solution one more approximation 

is taken into account that the velocity profile is parabolic. 
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as discussed by [6]. If we neglect the non-linear terms, the 
flow will be a Poiseuille flow through the constriction [5]. 
Substitution of (34) into (19) yield and differentiating w.r.t z, 
we get; 
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Using (28) and (35) in (20), we obtain; 
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In order to obtain velocity w we substitute (29), (33) and 

(35) in (28), to get 
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ሾ2ߟ െ ଶሿߟ ൅ ோ೐

ோ

ௗோ
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଻ହ
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ଶଶହ

ଵ

ோమ
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ସሿߟ89 ൅ ଶ

ହ଴ଽଶହ

ோ೐௩ೞ
ோయ

ௗோ

ௗ௭
ሾ59722ߟ െ ଶߟ233591 ൅ ଷߟ244476 െ ସሿߟ81492 ൅

ଵ଺

ହ଴ଽଶହ

ோ೐ఈ∗

ோఱ
ௗோ

ௗ௭
ሾെ33626ߟ ൅ ଶߟ114913 െ ଷߟ117720 ൅ ସሿߟ39240 ൅

	
ଷଶ

ଵ଴ଵ଼ହ

ோ೐ఉ∗

ோఱ
ௗோ

ௗ௭
ሾെ17941ߟ ൅ ଶߟ24931 െ ଷߟ73395 ൅ ସሿߟ34465 ൅

௦ݒ ቂ1 ൅
ଵ

଻
ሺ12ߟ െ ଶߟ6 ൅ ଷߟ20 െ  ସሻቃ, (37)ߟ9

 
where ߟ ൌ 1 െ ݎ

ܴൗ , is the axial velocity component as a 
function of r and z through constricted tube. We can get 
velocity of unobstructed tube by taking R as constant or unity. 
The axial velocity profile for [6] can readily be recovered as a 

special case by setting ߙ∗ ൌ ∗ߚ ൌ 0 and ݒ௦ ൌ 0 in (37). On the 
other hand by setting ߙ∗ ൌ ∗ߚ ൌ 0, in (37) the axial velocity 
component for [19] can readily be obtained. 

IV. PRESSURE DROP ACROSS THE CONSTRICTION AND 

ACROSS THE WHOLE LENGTH OF THE TUBE 

We can get the pressure distribution across p at any cross 
section z along the constriction, (36) is integrated using 
boundary condition݌ ൌ ݖ	at	଴݌ ൌ   ,଴ݖ
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ଶଶହ
׬

ଵ
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ோ
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∗ߚ ׬

ଵ
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ோ
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൅

଼଼

଻ହ
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׬
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ோ
ோబ

െ
଼
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׬

ଵ
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ݖ݀

௭బ
ି௭బ

,      (38) 

 
or; 
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ଵ
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ଵ
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,         (39) 

 
where; 

                   ܽ ൌ 1 െ
ఋ

ଶோబ
, ܾ ൌ

ఋ

ଶோబ
.                   (40)  

 
Now; 

׬
ଵ

௔ି௕ ୡ୭ୱ௨
ݑ݀ ൌ ሺܽଶߨ െ ܾଶሻିଵ/ଶ

గ
଴ .                 (41) 

 

Differentiating (41) thrice partially with respect to a, we get 
 

׬
1

ሺܽെܾ cos ሻ4ݑ
గ
଴ ݑ݀ ൌ ܽߨ ቀܽଶ ൅

ଷ

ଶ
ܾଶቁ ሺܽଶ െ ܾଶሻି

ళ
మ ൌ ቀ݂ߨ ߜ

ܴ0
ቁ,    (42) 

 
where; 

݂ ቀ
ఋ
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ఋ

ଶோబ
ቁ ቀ1 െ

ఋ

ோబ
൅

ହ

଼

ఋమ

ோబ
మቁ ቀ1 െ

ఋ

ோబ
ቁ
ି଻/ଶ

,        (43) 

 
So that 
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ଵ
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ଵ
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ସସ

଻ହ
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ଵ
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ଵ

ோమ
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଼
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మ ݂ ቀ

ఋ

ோబ
ቁ,                (44) 

 

When there is no constriction i.e. ߜ ൌ 0 and ݂ ቀ ఋ
ோబ
ቁ ൌ 1, the 

pressure drop across the normal tube is given by: 
 

ሺ∆݌ሻ௉ ൌ െ 8

ோ೐ܴ0
2.                         (45) 

 
In the absence of constriction, flow becomes Poiseuille and 
the subscript P denotes Poiseuille flow. 

We note that (44) includes the results of [6] as a special 
case for ߙ∗ ൌ ∗ߚ ൌ 0 and ݒ௦ ൌ 0 in (44). On the other hand by 
setting ߙ∗ ൌ ∗ߚ ൌ 0 in (44) the results for [19] can readily be 
obtained. 

V. SHEAR STRESS ON CONSTRICTED SURFACE 

The shear stress on the constricted surface is: 
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డ௪෥
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൅ 2

డ௨෥

డ௭෤

డ௪෥

డ௭෤

቏

ோ
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ቀ
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డ௭෤
൅

డ௪෥

డ௥̃
ቁቃ
ோ
.                            (46) 

 
We non-dimensionlize (46) and using order of magnitude 

analysis, wall shearing stress becomes; 
 

ఛ ෥ೢ
ఘ௎బ

మ ൌ
ଵ

ோ೐
ቀడ௪
డ௥
ቁ
ோ
൅ ∗ߙ ቀݓ డమ௪

డ௥డ௭
൅ డ௪

డ௥

డ௪

డ௭
ቁ
ோ
.          (47) 

 
The result of (47) is very large and it is not possible to state 

the complete mathematical result so only the graphical results 
will be presented for the analysis of shear stress. 

VI. SEPARATION AND REATTACHMENT  

Prandtl [22] has explained the phenomena of separation in 
such a manner that the velocity of the fluid in the boundary 
layer drubbed towards the wall and inside the boundary layer 
the kinetic energy of the fluid particles appears to be less than 
that at the outer edge of the boundary layer. This means that 
the fluid particles inside the boundary layer may not be able to 
get the pressure which is applied in the outer layer. Even a 
small rise in pressure may trigger the fluid particles near at the 
wall to stop and turn back to form a recirculating flow region, 
which is the characteristic of the separated flows. 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:10, 2015

629

 

 

The separation and reattachment points can be calculated by 
taking negligible effects of shear stress at the wall, i.e. ߬௪ ൌ 0.

  
 

ଵ

ோ೐
ቀడ௪
డ௥
ቁ
ோ
൅ ∗ߙ ቀݓ డమ௪

డ௥డ௭
൅ డ௪

డ௥

డ௪

డ௭
ቁ
ோ
ൌ 0,                 (48) 

 
Due to very large calculations only graphical results will be 

presented. It is noted that when ߙ∗ ൌ 0 and ݒ௦ ൌ 0 the results of 
[6] for separation and reattachment are recovered. 

VII. GRAPHS AND DISCUSSIONS  

We are considering two-dimensional flow of a second order 
fluid as a blood flowing in a constricted tube of infinite length. 
This geometry, of course, is intended to simulate an arterial 
stenosis. The flow is assumed to be steady, laminar and an 
incompressible. An approximate method is used to get the 
solution for the velocity, pressure drop across the constriction 
length, across the whole length of the tube and shear stress on 
the constricted surface. Just to study the effect and influence 
of slip on the flow parameters, two values of ݒ௦ ൌ 0 and 0.05 
has been considered. The effect of different flow parameters 
on the fluid flow are simulated with the help of graphs and 
proper discussion related to each graph is also provided. 

In Fig. 2, the variation of non-Newtonian parameter ߙ∗ ൌ 0 
on the velocity profile is described at z = 0.435, for no slip 
௦ݒ ൌ 0 and slipݒ௦ ൌ 0.05, takingܴ௘ ൌ ∗ߜ,50 ൌ 0.083. It is 
denoted that velocity decreases with an increase in non-
Newtonian parameter which seems physically to be correct 
and on the other hand the magnitude of the velocity increases 
with wall slip.as compare to no slip. 
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Fig. 2 Effect of non-Newtonian parameter ߙ∗and slip velocity ݒ௦ on 
velocity 

 
It can be seen from Fig. 3 that with an increase in Reynolds 

number velocity of the fluid decreases near the throat of the 
stenosis, however, it increases in the diverging region and 
remains parabolic with slip or no slip. It can also be seen that 
velocity increases with slip effect. The effect of Reynolds 
number on dimensionless pressure gradient between ݖ ൌ േ1 
takingsߙ∗ ൌ െ1.1, ߜ∗ ൌ 0.083 is shown in Fig. 4 it is well 
mentioned that the pressure gradient increases up to the throat 
of the constriction and then decreases in the diverging region. 
It is also observed that the value of pressure gradient at any 
point increases as Reynolds number increases in both 

converging and diverging region of constriction and pressure, 
on the mean while pressure decreases with slip Same behavior 
of ߙ∗and ߜ∗on the pressure gradient is observed in Figs. 5 and 
6. The theoretical distribution of shearing stress along the wall 
is illustrated in Figs. 7-9. Fig. 7 depicts the influence of 
constriction height on wall shear stress in the presence of slip 
and no slip. It is noted that with an increase in constriction 
height ߜ∗wall shear stress increases, and its maximum value 
occurs at the middle of the constriction, which seems 
physically to be correct. It is also observed that slip causes an 
increase in wall shear. It is observed from Fig. 8 that for any 
Reynolds number in the presence of slip or no slip, the 
shearing stress reaches a maximum value on the throat and 
then rapidly decreases in the diverging region. It is also noted 
that shear stress decreases with an increase in Reynolds 
number. It means that Reynolds number provides a 
mechanism to control the wall shear stress. From Fig. 9, it is 
well mentioning, as expected, that as non-Newtonian 
parameter ߚ∗	increases wall shear stress also decreases. In the 
view of slip wall shear stress decreases more rapidly. Figs. 10 
and 11 give the influence of Reynolds number on the 
separation and reattachment points respectively. It is observed, 
as naturally expected, that separation point moves upstream 
with an increase in Reynolds number while reattachment point 
moves downstream. It is also observed that the separation 
point moves upstream and the reattachment point moves 
downstream as the with slip condition.  
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Fig. 3 Effect of Reynolds number ܴ௘ and slip velocity ݒ௦ on velocity 

VIII. CONCLUSION 

In the present study, an incompressible laminar and steady 
flow of a second order fluid with slip velocity at wall through 
constricted tube is modeled and analyzed theoretically. The 
fluid is assumed to be blood flowing through the artery. The 
expressions for magnitude of velocity field, pressure gradient, 
wall shear stress and separation phenomena for the geometry 
of the constriction are presented. An integral momentum 
method is applied for the solution of the problem. The 
summary of findings of the present work is as follows: 
 Velocity decreases with an increase in non-Newtonian 

parameter. 
 Velocity increases with slip velocity at wall. 
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 Shear stress and pressure decreases with slip velocity at 
wall. 

 Viscous forces are dominant over inertia forces near the 
throat of the constriction, however, opposite effect is 
observed in the diverging region 

 Reynolds number and non-Newtonian parameter are 
economical parameters to control the wall shear stress. 

 Reynolds number also provides a mechanism to control 
the separation and reattachment points. 

 The present study includes the theoretical and 
experimental results for the velocity profile, pressure 
gradient and wall shear stress of [6] and [19]as a special 
case for ߙ∗ ൌ ∗ߚ ൌ 0 and ݒ௦ ൌ 0.  
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Fig. 4 Effect of Reynolds number ܴ௘ and slip velocity ݒ௦ on pressure 
distribution 
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Fig. 5 Effect of non-Newtonian parameter ߙ∗ and slip velocity ݒ௦ on 
pressure distribution 
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Fig. 6 Effect of ߜ∗ and slip velocity ݒ௦ on pressure distribution 
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Fig. 7 Effect of ߜ∗ and slip velocity ݒ௦ on wall shear 
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Fig. 8 Effect of Reynolds number ܴ௘ and slip velocity ݒ௦ on wall 
shear 
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Fig. 9 Effect of non-Newtonian parameter ߚ∗ and slip velocity ݒ௦ 
wall shear 
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Fig. 10 Separation points in the converging region 
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Fig. 11 Reattachment points in the diverging region 
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