
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:9, 2015

2106



Abstract—Detecting changes in multiple images of the same
scene has recently seen increased interest due to the many
contemporary applications including smart security systems, smart
homes, remote sensing, surveillance, medical diagnosis, weather
forecasting, speed and distance measurement, post-disaster forensics
and much more. These applications differ in the scale, nature, and
speed of change. This paper presents an application of image
processing techniques to implement a real-time change detection
system. Change is identified by comparing the RGB representation of
two consecutive frames captured in real-time. The detection threshold
can be controlled to account for various luminance levels. The
comparison result is passed through a filter before decision making to
reduce false positives, especially at lower luminance conditions. The
system is implemented with a MATLAB Graphical User interface
with several controls to manage its operation and performance.

Keywords—Image change detection, Image processing, image

filtering, thresholding, B/W quantization.

I. INTRODUCTION

ETECTING changes in image frames is part of many
contemporary applications. These include smart security

systems, smart homes, weather forecasting, automatic people
counting, object detection, object tracking, speed and distance
measurement, action recognition, irregularity detection, post-
disaster forensics and much more [1]. Many of today’s digital
cameras have some form of change detection to either change
focus or shutter settings or to capture specific types of action.
These applications differ in the scale, nature, and speed of
change. They also differ in their cost; while some may tolerate
false positives others may not. Some applications can employ
controlled amount of luminance while others cannot, for
instance, in outdoors applications.

The major challenge that faces image change detection is
avoiding false positives without introducing false negatives
False positives are defined as the number of no-change pixels
incorrectly detected as change (also known as false alarms)
while false negatives represent the number of change pixels
incorrectly detected as no-change (also known as misses) [2].
The main sources of false changes are:
 Noise: This happens all the time due to changes in sensor

sensitivity over time that which in turn is due to several
factors such as temperature, and power stability. It also
happens because of very small and fast fluctuations in
object luminosity due to power and temperature changes
and other factors. In most cases this type of noise appear

Madina Hamiane is with the department of Telecommunication

Engineering, Ahlia University, Bahrain (e-mail: mhamiane@ahlia.edu.bh).
Amina Khunji was an undergraduate student in the department of

Computer Engineering, Ahlia University, Bahrain (e-mail: ameena-
210@hotmail.com).

as “the salt and pepper noise” which as discussed later is
managed differently from uniform white noise.

 External Illumination Changes: this may change over time
due to many factors either generally or locally on parts of
the observed scene and contribute to false change
detection. Clouds, light source fluctuation, external object
shadows are some to mention. This, especially drastic
illumination changes tend to be difficult to overcome.

 Very low Algorithm threshold: The algorithm that would
detect the change will have as one crucial parameter the
threshold at which detection is considered [2]. If set too
low, it would raise the false positives probability. If set
too high it would increase “false negatives”. Thus, the
threshold needs to be set carefully and tuned to suit the
application scenario [3].

Ideally, change detection is a simple process involving two
image frames and a change is identified if the two frames are
not exactly equal. However practical change identification
mandates some pre-processing and thresholding to
differentiate true changes from false ones resulting from
uncontrolled factors [2]-[4]. Additionally, if the change rate is
high, high performance real time computing while using
efficient algorithms is necessary.

Image change detection techniques have been widely
discussed in the literature [4]-[7]. Among the various reported
techniques, image differencing to be a simple, straightforward
technique which allowed for an easy interpretation of results
and which can be applied to detect a wide range of image
changes ranging from environmental changes to moving
objects. Although only the magnitudes of these changes can be
obtained, the method has proven its robustness [6] and shown
to give results of high accuracy [7].

The main aim of this work is to develop a simple real-time
image change detection system using Matlab image processing
capabilities. The system is designed to detect changes in a
video stream captured in real time from a camera. Image
differencing technique is adopted for its simplicity, accuracy,
robustness and wide scope of application. The proposed
system aims to reduce false positives, account for low
luminance situations, and to provide a user interface with real
time configurable controls to enable fine tuning.

II.CHANGE DETECTION ALGORITHM

The proposed change detection algorithm is illustrated in
Fig. 1. Change is identified by comparing the RGB
representation of two consecutive frames captured in real-time
from a camera. The detection threshold is controlled to
account for various luminance levels. The comparison result
can be passed through a filter before decision making to
reduce false positives, especially at lower luminance
conditions. Once a change is successfully detected, a warning

Madina Hamiane, Amina Khunji

A Real-Time Image Change Detection System

D

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:9, 2015

2107

sign is issued both in visual and audio format. The detected
changes are then saved as video files on the computer storage.

Fig. 1 Change detection Algorithm

All different phases of the algorithm were implemented
using MATLAB Image Acquisition and Image Processing
toolboxes. The algorithm is described in detail in the
following steps:

Capture Initial Frame: In every loop, two consecutive
frames need to be compared; the last frame from the previous
iteration (frame0) and a new frame captured in the current
iteration (frame1).

Calculate Difference: The built-in MATLAB function
imabsdiff is used here. The function takes two color
frames and returns the difference color frame:

Diff_Img=imabsdiff(frame0,frame1);

For instance, Fig. 2 shows two frames and the result of
applying imabsdiff.

Fig. 2 imabsdiff function result

Thresholding (B/W Quantization): Observing the results
of several experiments under different lighting conditions and
types of changes, we noticed that to rely on this difference we
need to set a threshold. The threshold value would be different
for different setup and lighting conditions and the best value to
balance having false negatives and false positives is difficult
to set. For this reason we have chosen to normalize the
difference by quantizing the difference image to a black and
white image. This choice implied using a threshold value
between 0 and 1 and after several tests, 0.5 was found to be
the most suitable threshold value for most scenarios. We used
Matlab function im2bw on the difference image. The result is
shown in Fig. 3.

Decision Making: Another advantage of Quantizing to
black and white (B/W) is allowing decision making using 0.
That is, any presence of white pixels is interpreted as change.
This is unlike using the difference color image alone which
needs the comparison to be done at a threshold that might have
to be changed from scenario to scenario. In the case of B/W
quantization, the thresholding is taken away from the decision
making step to the processing stage.

To account for all pixels, all BW image pixels are averaged
using the matrix mean operation on two dimensions (Width-
Height). This presents another advantage of B/W related to
performance as in the color case we need to average on three
dimensions (width-height-RGB).

Diff_Img_mean=mean(mean(BW));

if Diff_Img_mean>0

Positive Action: Once a change is decided, an action needs

to be taken such as an audible or visual warning. Both
warnings have been used. For the audible warning a wav file
is read from disk and played using MATLAB.

[y,Fs]=audioread('wav\chattell.wav');
sound(y,Fs);

Looping: After decision making and positive action, the

loop goes to the next iteration, copying frame1 to frame0 to
obtain new frame1 in the next iteration and to repeat the
algorithm.

Fig. 3 im2bw function result

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:9, 2015

2108

III.THE SYSTEM GUI

The general components of the system’s GUI are shown in
Fig. 4. In general our GUI has two types of controls:
Configuration and On/Off Functionality controls.

Configuration controls: The controls are accessible to the
user to adjust the program performance.
 Frame Rate: to set the frame rate at which frames are

captured.
 Filter: to choose filtering action before BW quantization.
 Minimum Luminance Change Magnitude: This sets the

BW threshold for white color, as explained before.
On/Off Functionality controls: These turn on/off specific

functionalities, we have two of them:
- Turn on/off monitoring
- Turn on/off recording

The rest of the GUI components do not allow user
interaction. These are:

Image Frames: There are three image frames, each
displays in real time the image frames of
- the current captured frame
- the difference
- the Black and White quantized image

Positive Action Animation: This is a fourth image frame,
but using the timer function will display three consecutive
frames to animate a red exclamation mark (”!”) during change
detection. It displays a black frame otherwise.

The Timer Function: The timer function is mostly the
heart of any GUI, as it does the continuous action intended. In
our case, the timer function does the frame looping explained
before.

Fig. 4 System’s GUI

IV.OPTIMIZATION

To enhance false positives/negatives avoidance and to make
the system more useful the following were applied.

Fig. 5 Illustration of Median filter effect

A.Median Filtering Option

The difference image is passed into a Median filter to get
rid of luminance noise before quantizing to black and white.
This noise appears as “salt and pepper” noise and hence the
use of the median filter. Luminance fluctuations are filtered
out using this filter. Before the filter, the image is converted
first to Grayscale.

Fig. 5 shows the presence of a median filter on the no
change case. The image brightness is exaggerated 80% for
illustration. On the right side, where no filter is applied we can
observe the spot of luminance fluctuation close to the center.
Such a fluctuation is filtered out using the median filter as
shown on the left.

B.Video Recording Option

During changes, if this option is on, the continuous
changing frames are saved to disk as a video. This would be
useful in real life applications as it makes tracking the changes
much easier than if the camera record was fully saved. This of
course would also save disk and processing resources as the
recording operation would practically be mostly idle.

V.SYSTEM TESTING AND RESULTS

The system was tested in various scenarios, but only
indoors. The tests were performed using the following
settings:
- Threshold: 0.18, 0.5, 0.82
- Luminance: low, medium, high indoor luminance
- Filter: none and median
- Change types: Person movement, smoke, TV movie

Table I shows the false negative rates for all the possible
combinations of the above. The results were as expected :
- High threshold is almost useless all the time.
- Low threshold works fine but at the expense of higher risk

of false positives
- Smoke requires low threshold and could be detected at

low luminance.

A.High Luminance Situation

During day light or using high luminance, the precision in
change detection is high. However, the false positive rate is
also higher than the case of low luminance although still
small. The presence of the median filter highly enhances this.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:9, 2015

2109

TABLE I
TESTING RESULTS

 Threshold 0.18 0.5 0.82

Luminance low med high low med high low med high

No Filter
Change (person passing) 0% 0% 0% 80% 0% 0% 100% 70% 90%

Change (smoke) 20% 20% 20% 80% 80% 20% 100% 100% 100%

Change (TV movie) 5% 0% 0% 75% 0% 0% 100% 30% 100%

Median
Filter

Change (person passing) 0% 0% 0% 90% 0% 10% 100% 90% 95%

Change(smoke) 20% 20% 20% 90% 80% 40% 100% 100% 100%

Change (TV movie) 5% 0% 0% 90% 5% 0% 100% 50% 100%

Observing one minute false positive detection at threshold
0.1 (very low threshold intentionally) resulted in 10 false
changes/minute without the filter. With the filter, the rate
dropped dramatically to almost zero.

B. Low Luminance Situation

In low luminance there seemed more risk of false negatives.
To overcome that, the threshold was set to lower than 0.5.

VI.CONCLUSION

Current technology and computing power allow a great deal
of usefulness in image processing. In this work a system was
developed to detect changes in a video stream captured in real-
time and was shown to effectively detect these changes in
addition to significantly reduce false positives, account for low
luminance situations, and provide fine tuning capabilities
through a user interface with real time configurable controls.

It was shown and emphasized that the performance of the
change detection algorithm could easily be enhanced with the
use of:
- Filters
- Luminance control
- Threshold control

Depending on luminance/threshold setup there could be
various applications. For instance, a controlled high
luminance/low threshold would result in high sensitivity to
dim changes such as in smoke detection.

The performance of the proposed system could be further
enhanced with the use of a better image capture device quality
and a higher computing power to allow complex algorithms to
make more precise decisions.

The use of adaptive filters would further enhance the
system’s performance as these automatically adjust their
performance depending on the luminance of the local part of
the image and would allow outdoor application. It is also
believed that automatically setting the threshold, or auto
thresholding, depending on the luminance level may also
enhance system performance. This would provide even further
enhancement if performed together with adaptive filtering.

REFERENCES
[1] RI Capó Irizarry, "Fundamentals & Applications of Image Change

Detection," Research Thrust R2 Presentations. Northeastern
University, Paper 20, 2006.

[2] Richard J. Radke et al, "Image Change Detection Algorithms: A
Systematic Survey," IEEE Transactions on Image Processing, Volume
14 , Issue 3, pp.294 – 307, 2005.

[3] P.L.Rosin, E.Ioannidis, "Evaluation of global image thresholding for
change detection," Pattern Recognition Lett. Vol. 24, Issue 14, pp
2345–2356, 2003.

[4] T. A. Pawar, "Change Detection Approach for Images Using Image
Fusion and C-means Clustering Algorithm," 4th International Journal
of Advance Research in Computer Science and Management Studies,
Volume 2, Issue 10, pp.303-307, 2014.

[5] M. Ilsever, C. Unsalan, "Pixel-Based Change Detection Methods,
Remote Sensing Aplications," Vol X, pp 7-21, 2012, Springer.

[6] Ashok Sundaresan, et al., "Robustness of Change Detection Algorithms
in the Presence of Registration Errors," Photogrammetric Engineering
& Remote Sensing, Volume 74, Issue 4, pp.375-383, April 2007

[7] S. Minu, et al., "A Comparative Study of Image Change Detection
Algorithms in MATLAB," Aquatic Procedia , Vol 4, pp 1366–1373,
2015.

