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Abstract—In this article, we used the residual correction method 

to deal with transient thermoelastic problems with a hollow spherical 

region when the continuum medium possesses spherically isotropic 

thermoelastic properties. Based on linear thermoelastic theory, the 

equations of hyperbolic heat conduction and thermoelastic motion 

were combined to establish the thermoelastic dynamic model with 

consideration of the deformation acceleration effect and non-Fourier 

effect under the condition of transient thermal shock. The approximate 

solutions of temperature and displacement distributions are obtained 

using the residual correction method based on the maximum principle 

in combination with the finite difference method, making it easier and 

faster to obtain upper and lower approximations of exact solutions. 

The proposed method is found to be an effective numerical method 

with satisfactory accuracy. Moreover, the result shows that the effect 

of transient thermal shock induced by deformation acceleration is 

enhanced by non-Fourier heat conduction with increased peak stress. 

The influence on the stress increases with the thermal relaxation time. 

 

Keywords—Maximum principle, non-Fourier heat conduction, 

residual correction method, thermo-elastic response. 

I. INTRODUCTION 

UE to the extensive applications of the ultra-short pulse 

laser heating and the rapid metal solidification technology 

used in the material processing, analysis for the thermoelastic 

response in the solid is of considerable practical importance in 

engineering sciences. Theories of thermoelasticity are 

frequently used in a variety of engineering applications to deal 

with advanced engineering design problems for structures 

under thermal shock loads [1]-[3]. The conventional theory of 

thermo-elasticity introduced by Biot [4] is based on the 

Fourier’s heat conduction law, which means that thermal 

disturbances propagate with infinite speed. However, this 

phenomenon of heat conduction is not in accordance with some 

new experimental results for the case involving extremely short 

transient or high heat flux [5], [6]. To eliminate the paradox of 

an infinite thermal wave speed and overcome the unacceptable 

predictions of conventional theory, [7] and [8] proposed the 

concept of the hyperbolic nature involving finite speed of 

thermal disturbance, known as the second sound. Chester [9] 
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discussed the possible existence of second sound in solids and 

provided some support for the contention that the second sound 

must exist in any solid. Numerous investigators have attempted 

to address unacceptable predictions produced by the 

conventional theory based on the general notion of relaxing the 

heat flux in the classical Fourier heat conduction equation by 

introducing one or more relaxation times, which are hence 

referred to as generalized thermo-elastic theories. In contrast to 

classical thermoelastic models in which the temperature 

disturbances are assumed to propagate at infinite speeds, 

modified theories involving non-Fourier heat conduction based 

on the general notion of relaxing the heat flux in the classical 

theory have been proposed to account for the finite speeds of 

thermal wave propagation and thermally-induced stress wave 

propagation. For instance, [10] and [11] independently 

postulated a constitutive relation between the heat flux vector (

q ) and temperature gradient ( T∇ ) in solids, the so-called CV 

wave model, as ( )q t k Tτ+ ∂ ∂ = − ∇q q . 
qτ  indicates the 

observed time-lag, that is so-called thermal relaxation time. 

This equation can be used to account for the finite speed of 

heat. Coupling the CV-model to the energy conservation 

equation yields a hyperbolic equation, thereby introducing a 

non-Fourier effect. 

The conventional thermoelastic theory involves the energy 

conservation equation based on the Fourier heat conduction law 

and the motion equation. Since the energy conservation 

equation takes a parabolic form and the equation of motion in 

terms of displacement within the infinitesimal deformation 

assumption is hyperbolic, the conventional thermo-elasticity 

includes a mixed parabolic-hyperbolic system. In contrast, the 

energy conservation equation considering non-Fourier heat 

conduction together with the motion equation turns out to be a 

hyperbolic-hyperbolic system, also known as hyperbolic 

thermo-elasticity. The energy conservation equation in the 

hyperbolic form for the non-Fourier heat conduction law can be 

reduced to the classical form with the parabolic equation when 

the relaxation time approaches to zero, thus this form of 

thermo-elasticity is also called as generalized thermoelasticity. 

Comprehensive literature surveys of hyperbolic 

thermoelasticity can be found in reviews by [12].  

Since theoretical [13]-[15] and experimental studies support 

the finiteness of heat propagation speeds [16], [17], many 

investigations for thermoelastic problems were carried out 

Application of Residual Correction Method on 

Hyperbolic Thermoelastic Response of Hollow 

Spherical Medium in Rapid Transient Heat 

Conduction 
Po-Jen Su, Huann-Ming Chou 

D



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:7, 2015

418

 

 

based on these generalized theories. With the development of 

transient heating technologies such as ultra-short and high 

energy density laser applications to enhance the properties of 

material surfaces, increased attention has focused on rapid 

heating combined with mechanical behavior. Classical 

thermo-elasticity has been found to be sufficient for general 

engineering applications, while modified thermo-elasticity 

based on non-Fourier heat conduction is more suitable for 

describing real transient heating [18]. 

Many studies have examined thermoelastic problems. 

Tanigawa et al. [19] analyzed transient thermal stress problems 

of solid and hollow spheres with spherically isotropic 

properties, noting the time-dependent variations of the thermal 

stress distributions caused by the variation of the thermo-elastic 

compliance constants. Hetnarski and Ignaczak [20] studied the 

response of semi-space to a short laser pulse in the context of 

generalized thermoelasticity. Lee [21] found the numerical 

solution of quasi-static coupled thermo-elastic problems for 

multilayered spheres by using the Laplace transform and matrix 

similarity transformation. The established computational 

procedures are capable of solving the generalized thermoelastic 

problem of multilayered spheres. Yu et al. [22] studied 

hyperbolic thermoelasticity due to pulsed heat input by the 

finite element method. They found the heat wave and elastic 

wave travel in the medium at a finite velocity and are reflected 

at the end of the rod. 

In realistic engineering applications and scientific research, 

finding exact solutions for various governing equations is only 

possible in a very limited number of cases. It is usually difficult 

to find exact solutions for complex geometric shapes under the 

given initial and boundary conditions, to say nothing of 

involving nonlinear equations and/or non-homogeneous 

boundary conditions. Given this difficulty in obtaining analytic 

solutions for such complex geometric shapes with non-homo-

geneous boundary conditions, it is only possible to find their 

approximate solutions through certain numerical schemes to 

obtain approximate solutions and error ranges. One such 

scheme is the Residual Correction Method.  

Previous studies have verified that the error margin between 

approximate and exact solutions usually decreases as the 

number of grid points or approximate functions increases, but 

this requires more calculation time and memory space. 

Nevertheless, it is still impossible to completely determine the 

accuracy of the approximate solution. Protter [23] proposed the 

concept of the maximum principle which explains the 

relationship between the solution and the residual of a 

differential equation and can be used to find the upper and 

lower approximate solutions of the exact solutions of some 

differential equations. However, until recently this concept had 

not been broadly applied in numerical methods. Applying this 

approach involves a programming problem of mathematical 

inequalities that requires time-consuming calculations. In 

recent years, some investigators have made attempts to simplify 

the calculating procedure. Lee et al. [24] successfully used 

genetic algorithms to apply simplified equations reliant on trial 

functions to handle programming problems generated in the 

optimization process. Su and Chen [25] extended previous 

studies for non-Fourier heat conduction with the 

time-dependence boundary condition. Their study showed that 

incorporating the residual correction method into the nonlinear 

iterative procedure of the finite difference can make it easier 

and faster to obtain approximate solutions. 

The main object of this article is to study the distributions of 

temperature, displacement and thermo-elastic stresses for an 

isotropic, homogeneous sphere due to thermal shock (i.e., 

sudden temperature change) on the spherical surface. The study 

uses the residual correction method based on maximum 

principles in differential equations, which is quite effective for 

obtaining the solution for distribution of temperature and 

displacement. Thermal stress is then solved. The advantage of 

this method lies in its capacity to restrict the exact solution 

within a known region, and thus obtain upper and lower 

approximate solutions. It can be used to estimate the range of 

the maximum possible error between the approximate solution 

and the exact solution, avoiding a blind increase of calculation 

grid points to obtain more accurate approximate solutions. 

II. MATHEMATICAL PRELIMINARIES 

The maximum principle of the differential equation is used 

as the main concept to form the complete structure in this study. 

Based on this, the upper and lower approximate solutions of the 

exact solution can be obtained. Analyzing the error according 

to the mean value of the upper and lower approximate solutions 

can effectively deal with the defects resulting from increasing 

the numbers of grids or approximate functions when using 

traditional numerical methods. This methodology can 

significantly reduce computing time, save memory, and 

promote numerical accuracy, and is expected to provide high 

academic value and practicability for future numerical research. 

A. Maximum Principle for Differential Equations 

The maximum principle for differential equations is a 

generalization of basic problems in calculus to describe a 

continuously differentiable function as having its maximum 

value at one endpoint of an interval if it satisfies the inequality 

( ) 0f x′′ >  on the interval. That is to say, if a function satisfies a 

differential inequality in a domain and obtains its maximum 

value on the boundaries of the domain, we can say that the 

differential equation satisfies the maximum principle for 

differential equations with monotonicity. The approach is 

based on the concept of the maximum principle to build up the 

residual of differential equations and thus obtain the upper and 

lower approximate solutions. At first, assume a differential 

equation in the form below: 

 

( ) ( , , , ) ( )x xxR x F x u u u f xθ = −%
% % %  in D                                              (1) 

 

Boundary conditions satisfy 
 

( ) ( ) ( )R x g x xθ θ= −%
%  on D∂                                                              (2) 
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where the function ( )R xθ%
 is known as the residual value 

function of the approximate function ( )xθ%  of the differential 

equation in the domain D  or on the boundaries D∂ . Assuming 

that the approximate solutions are defined in the calculation 

domain and are continuous to second derivatives, if 

 

0
R

θ

∂
≤

∂
 in D                                                                                           (3) 

 

then, if and only if the following relationship between the 

residual relation and approximate functions holds true 

 

( ) ( ) 0 ( )R x R x R xθθ θ
≥ = ≥( )  on D D∪ ∂                                      (4) 

 

the approximate solutions will have the following relation with 

the exact solution: 

 

( ) ( ) ( )x x xθ θ θ≤ ≤
( )

 on D D∪ ∂                                                      (5) 

 

where ( )xθ
(

 and ( )xθ
)

 are respectively known as the lower 

and upper approximate solutions of the exact solution ( )xθ . A 

differential equation with such relations is considered 

monotonic. 

B. Residual Correction Steps 

Use the finite difference method to discretize and refor-

mulate the residual relation into: 

 

[ ] [ ]( )1

, , , , , ,, , , , , ,
( , , , )

n n

r i j k r i j kr i j k r i j k
R t x y z L N fθ θ+= − + +            (6) 

 

where L  is the linear operator and N  is the nonlinear operator, 

the superscript n  is the number of iterations, and the subscript 

, , ,r i j k  is the serial number of the grid points after discretizing. 

Then, transfer the expression into an iterative equation with 

residual correction to avoid complex calculations: 

 

[ ] [ ]( )1

, , ,, , , , , ,

, , ,

max

min
                        ( ( , , , ))

n n

r i j kr i j k r i j k

n
r i j k

L N f

R t x y z

θ θ+
− + +

= ∆
                                   (7) 

 

where 
, , ,

( ), , ,
n

r i j k
R t x y z∆  indicates the residual distribution 

function of the last calculation results on adjacent subintervals 

of grid points. It can be expanded as follows using the Taylor 

series at the grid points: 

 

, , ,

, , ,
1 1 1 1

( , , , )
( , , , )

( ) ( ) ( ) ( )

! ! ! !

r i j k

r i j k s p q r
s p q l

s p q l
r i j k

R t x y z
R t x y z

t x y z

t t x x y y z z

s p q r

∞ ∞ ∞ ∞

= = = =

∂
∆ = ∑ ∑ ∑ ∑

∂ ∂ ∂ ∂

− − − −
                    (8) 

 

( ) ( )r rt t t t− ∆ ≤ ≤ , ( ) ( )i ix x x x x− ∆ ≤ ≤ + ∆ , 

( ) ( )j jy y y y y− ∆ ≤ ≤ + ∆ , ( ) ( )k kz z z z z− ∆ ≤ ≤ + ∆  

 

Finally, the residual values on the adjacent subintervals of the 

grids can be ensured to be all positive or all negative by the 

residual values at the calculation grids which are corrected by 

identifying the maximum and minimum of residual values on 

these intervals. 

The convergence criterion applied in the present study is the 

relative error convergence as defined by: 

 

1

,    0,1, ,

n n

i i
in

i

E i Nθ
θ θ

ε
θ

+ −
= ≤ =

% %

L
%

                                      (9) 

III. MODEL DESCRIPTION 

This study deal with the one-dimensional thermoelastic 

problems of a hollow sphere, with symmetry under the 

following assumptions: 

(1). Material is assumed to be isotropic and homogeneous, and 

to have constant thermal properties. 

(2). Deformation and strain satisfy Hooke’s law. 

(3). All physical quantities are assumed to be functions of the 

radial coordinate and time only. 

(4). The medium is initially undisturbed and traction free on 

surface, without body forces or internal heat sources. 

 

 

Fig. 1 Computation domain 

 

Consider a hollow spherical medium with the inner radius ir  

and outer radius or , as shown in Fig. 1. The body is at rest and 

with a uniform initial temperature, 0T T= . Expose a thermal 

shock to the body by changing the temperature on the entire 

boundary of spherical surface from 0T T=  to 1T T= . Thus the 

boundary of the spherical surface remains steady at this 

temperature and allows the boundary to move without any 

restriction. 

In this study (due to spherical symmetry), the displacement 

and temperature are assumed to be functions of space, r  and 

time, t  only. The arising displacements in the spherical 

coordinate ( , , )r θ φ  can be expressed as: 

 

( , )r ru u r t= , 0uθ = , 0uφ =                                                          (10) 
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Considering the strain–displacement relations, the strain 

components can be written as: 

 

r
rr

u

r
ε

∂
=

∂
, ru

r
θθ φφε ε= = , 0r rθ φ θφε ε ε= = =                     (11) 

 

The stress-displacement relations are 

 

( )0

( , ) ( , )1 2
( , )

1 2 1 1

r r
rr

u r t u r tE
T r t T

r r

ν ν
σ α

ν ν ν
∂− 

= + − − − + ∂ + 
 (12) 

 

( )0

( , )

1 2 1

( , )1
                            ( , )

1

r

r

u r tE

r

u r t
T r t T

r

θθ φφ
ν

σ σ
ν ν

α
ν

∂
= = − + ∂


+ − − + 

               (13) 

 

where 
rrσ  and θθσ  are stress components of r  and θ  

direction, respectively. E  is Young’s Modulus, ν  is Poisson's 

ratios, α  is the coefficients of linear thermal expansion. 

( , )ru r t  and ( , )T r t  are respectively the distributions of media 

of rising displacement and temperature. 

Based on the non-Fourier heat conduction and linear 

thermoelastic theory, the governing equations of temperature 

and displacement of the sphere are formulated as, 

 
2 2

2 2

( , ) 2 ( , ) 1 ( , ) ( , )qT r t T r t T r t T r t

r r a t ar t

τ∂ ∂ ∂ ∂
+ = +

∂ ∂∂ ∂
                    (14) 

 
2

2 2

2

2 2

( , ) ( , )2 2
( , )

( , )1 1 ( , )
               

1

r r
r

r

E

u r t u r t
u r t

r rr r

u r t v T r t

v rV t
α

∂ ∂
+ −

∂∂

∂ + ∂
− =

− ∂∂

                             (15) 

 

where (1 )

(1 )(1 2 )
E

E
V

ν
ν ν ρ

−
=

+ −
 is the speed of the thermal-elastic 

wave, and a k cρ=  is the thermal diffusivity. 

The initial and boundary conditions described above are 

expressed as 
 

0t = : 
0( , )T r t T= , ( , )

0
T r t

t

∂
=

∂
; ( , )

( , ) 0
u r t

u r t
t

∂
= =

∂
         (16) 

 

or r= : 
1( , )T b t T= ; ( , ) 0r r tσ =                                                   (17) 

 

ir r= : ( , )
0

T r t

r

∂
=

∂
; ( , ) 0r r tσ =                                                (18) 

 

For the convenience of subsequent analysis, the following 

dimensionless quantities are defined: 

 

EV r

a
η = ; 

2
EV t

a
ξ = ; 

2
E qV

a
τ

τ
ξ = ; 0

1 0

T T

T T

−
Θ =

−
; 

1 0

1

(1 ) ( )

E rV uv

v T T aα
−

Ψ =
+ −

; 

1 0

1 2
,    ( , ,  )

( )
i i

v
i r

E T T
σ θ φ

α
−

Ω = =
−

.                                            (19) 

 

Equations (14) and (15) are expressed in terms of the above 

dimensionless variables as 

 
2 2

2 2

2
τξ

η η ξη ξ

∂ Θ ∂Θ ∂ Θ ∂Θ
+ = +

∂ ∂∂ ∂
                                                           (20) 

 

and 

 
2 2

2 2 2

2 2

η η ηη η ξ

∂ Ψ ∂Ψ ∂ Ψ ∂Θ
+ − Ψ − =

∂ ∂∂ ∂
                                               (21) 

 

The dimensionless initial and boundary conditions and stress 

are represented as  

 

0ξ = :  
( , )

( , ) 0
η ξ

η ξ
ξ

∂Θ
Θ = =

∂
;  

( , )
( , ) 0

η ξ
η ξ

ξ

∂Ψ
Ψ = =

∂
  ( 2 2 ) 

 

0η = : ( , )
0

η ξ

η

∂Θ
=

∂
; ( , ) 0η ξΨ =                                              (23) 

 

1η = : ( , ) 1η ξΘ = ; ( , ) 0r η ξΩ =              (24) 

 

( , ) 2 ( , )
( , )

1
r

v

η ξ ν η ξ
η ξ

η η
∂Ψ Ψ

Ω = + − Θ
∂ −

                                    (25) 

 

( , ) 1 ( , )
( , )

1 1v v
θ φ

ν η ξ η ξ
η ξ

η η
∂Ψ Ψ

Ω = Ω = + − Θ
− ∂ −

              (26) 

 

To analyze the error of approximate solutions of temperature 

and displacement, the residual correction relations are 

respectively established for (20) and (21) first, in the form of 

 

2 2

1 2 2

( , ) 2 ( , ) ( , ) ( , )
R τ

η ξ η ξ η ξ η ξ
ξ

η η ξη ξ

∂ Θ ∂Θ ∂ Θ ∂Θ
= + − −

∂ ∂∂ ∂
      (27) 

 

2

2 2

2

2 2

( , ) 2 ( , )

2 ( , ) ( , )
                       ( , )

R
η ξ η ξ

η ηη

η ξ η ξ
η ξ

ηη ξ

∂ Ψ ∂Ψ
= +

∂∂

∂ Ψ ∂Θ
− Ψ − −

∂∂

            (28) 

 

Before continuing the calculation steps, apply the 

above-mentioned maximum principle to determine whether the 

monotonic characteristic is present in (27) and (28). 

 
2

1

2

2

2

( , ) 2 ( , )

( , ) ( , )
                                0

R

τ

η ξ η ξ
η ηη

η ξ η ξ
ξ

ξξ

∂ ∂ ∂ Θ ∂Θ
= +

∂Θ ∂Θ ∂∂

∂ Θ ∂Θ
− − =

∂∂ 

              (29) 
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2
2

2 2

2

2 2

( , ) 2 ( , ) 2
( , )

( , ) ( , ) 2
                                 

R η ξ η ξ
η ξ

η ηη η

η ξ η ξ
ηξ η

∂ ∂ ∂ Ψ ∂Ψ
= + − Ψ

∂Ψ ∂Ψ ∂∂

∂ Ψ ∂Θ
− − = −

∂∂ 

            (30) 

 

If the maximum principle is satisfied, the required condition is: 

 

1 0
R∂

≤
∂Θ

  and  2 0
R∂

≤
∂Ψ

.                                                                     (31) 

 

Because the value of η  in (30) is positive, (31) holds. 

Therefore, the monotonicity exits. Subsequently, the residual 

correction method is used in combination with the finite 

difference method of the implicit scheme to discretize (20) and 

(21). To add the residual correction value at every calculation 

grid points, the iteration relations of temperature and 

displacement will be generated as 

 

( ) ( )

1 1
12 2 2

1 1
12 2 2

1 1 2 1

2( ) ( ) ( )

21 1 1

2( ) ( ) ( )

Min Min
0, ,

Max Max

n n
i i

i

n n n
i i i

i

n n n

t

R R x R

τ

τ τ

ξ η η

ξ
η η ξη η ξ

ξ ξ
η ηη ξ ξ

ξ η

+ +
−

+ −
+

   
− Θ + − − − Θ      ⋅ ∆ ⋅∆∆ ∆ ∆   

     
+ + Θ = − Θ + − Θ          ⋅ ∆ ∆∆ ∆ ∆     

− − ∆ − ∆ − ∆

 (32) 

 

( ) ( )

1 1
12 2 2 2

1 1
12 2 2

1 1
1 1

1 1 2 2 1

( ) ( ) ( )

1 1 2 1

( ) ( ) ( )

Min Min1
0, ,

Max Max2

n n
i i

i i

n n n
i i i

i

n n n n n
i i

t

R R Rξ η η

η ηη η η ξ

η ηη ξ

ξ η η
η

+ +
−

+ −
+

+ +
+ −

  
− Ψ + − − − Ψ     ⋅ ∆∆ ∆ ∆   

 
+ + Ψ = − Ψ + Ψ  ⋅ ∆∆ ∆ ∆ 

 + Θ − Θ − − ∆ − ∆ − ∆ ∆

   (33) 

 

Next, the central finite difference method is used discretize the 

initial and boundary conditions (22)~(24), as: 

 
0 0n

i
=Θ = , 1 1n n

i i
+ −Θ = Θ ; 0 0n

i
=Ψ = ; 1 1n n

i i
+ −Ψ = Ψ                 (34) 

 

 1 1
n n
i i+ −Θ = Θ , 0 0nΨ =                                                                          (35) 

 

1
n
NiΘ = , 

1 1

2
2

1

n
n n nNi
i i Ni

Ni

ν
η

ν η+ −

 Ψ
Ψ = Ψ + ∆ − + Θ  − 

                  (36) 

 

The selected residual correction value at each grid point is 

either the minimum or the maximum in this grid to ensure 

1 ( , ) 0R η ξΘ ≥  or 
1 ( , ) 0R η ξΘ ≤ ; 

2 ( , ) 0R η ξΨ ≥  or 2 ( , ) 0R η ξΨ ≤ . 

For the above expressions, if two variables η  and ξ  of (27) 

and (28) are partially differentiated, and the differential terms 

of a higher order, ηηηΘ , ξξξΘ , ηηηΨ , and ξξξΨ  can be 

expressed as 

 

( )2 1
1 2 2R η η ηη τ ηξξ ηξη η ξ− −= − Θ + Θ − Θ − Θ                            (37) 

 

1
1 2R ξ ξηη ξη ξξη−= Θ + Θ − Θ                                                           (38) 

 
2 1 3

2 4 2 4R η η ηη ηξξ ηηη η η− − −= − Ψ + Ψ + Ψ − Ψ − Θ                (39) 

 
1 2

2 2 2R ξ ξηη ξη ξ ξηη η− −= Ψ + Ψ − Ψ − Θ                                     (40) 

 

Finally, calculate iteratively to obtain numerical solutions 

when they meet the convergence criterion. Here, set the relative 

tolerant error ε  as 10
-8

. In the iterative process, the residual 

corrections are added together and the calculation is iterated 

until nΘ% , 1n+Θ% , nΨ%  and 1n+Ψ%  satisfy the convergence 

criterion to find the approximate solutions of the upper and 

lower bounds. 

IV. RESULTS AND DISCUSSION 

To numerically assess the correctness of the residual 

correction method, we first conduct the grid convergence test. 

The number of grid points is crucial in the numerical analysis 

and has a significant impact on accuracy and efficiency. The 

distributions of dimensionless temperature and displacement 

for various numbers of grid points are illustrated in Figs. 2 and 

3. Higher accuracy is obtained as the number of grid points 

increases. However, the discrepancy between N=400 and 

N=800 is not distinct and the mean solutions nearly overlap. 

The results indicate that the mean approximate solution can be 

acquired even with fewer grid points. Thus, as far as calculation 

efficiency is concerned, calculation could proceed with fewer 

grid points. Moreover, as shown in the figures, the upper 

approximate solutions are always distributed above the lower 

approximate solutions in the whole calculation domain. It is 

clear that the mean approximate solutions are always located 

between the upper and lower approximate solutions. The upper 

and lower approximate solutions gradually tend to approach 

each other as the number of grid points increases and always 

satisfy the requirement for monotonic residual relation. 

 

 

Fig. 2 Upper, lower and mean solutions of dimensionless temperature 

distributions for various grid number values. ( 0.3ξ = , 0.3τξ = ) 
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Fig. 3 Upper, lower and mean solutions for dimensionless 

displacement variation distributions for various grid number values      

( 0.5ξ = , 0.25τξ = ) 

 

Fig. 4 shows the dimensionless temperature profiles as time 

increases at 0.3η = . Higher and wavy shaped temperature 

patterns are seen as the relaxation time increased. This 

phenomenon is due to the nature of the hyperbolic heat 

conduction equation, which induces the thermal wave and leads 

to a discontinuous temperature response. According to the 

formula for the speed of a dimensionless thermal wave, 

1v τξ=% . While the thermal relaxation time is extremely small 

( 0.01τξ =  in this case), the propagation speed of thermal 

disturbance passes forward rapidly. The curve indicates a 

continuous temperature distribution inside the sphere. This heat 

transfer process can be considered to be a Fourier heat 

conduction. As thermal relaxation time increases, the speed of 

thermal disturbance decays rapidly. The lagging effect between 

the distribution of heat flux and temperature causes the 

temperature distribution inside the sphere to present a step 

distribution and forms a temperature gradient with a large 

amplitude. That is to say, the effect of non-Fourier heat 

conduction induces thermal waves and leads to a discontinuous 

temperature response resulting in a finite speed of propagation 

of the thermal waves. 

Figs. 5 and 6 show the curve of the dimensionless radial and 

circumferential stress varied at different position versus time 

for the given dimensionless thermal relaxation time, 0.01τξ =

. When the spherical surface is subjected to a thermal shock, the 

thermal disturbance induces the thermo-elastic wave 

propagation forward in the form of a wave. In the meantime, the 

elastic wave arriving at the outer spherical surface is reflected, 

and the reflected wave continues to propagate to the interior of 

the sphere. Superimposing the incident and reflected wave, the 

periodic stress field distribution inside the sphere presents an 

alternating tensile and compressive stress. The closer to the 

center of the sphere, the greater the stress peak gets. 

 

 

Fig. 4 Dimensionless temperature distributions versus time for various 

dimensionless relaxation times ( 0.3η = ) 

 

 

Fig. 5 Curves of dimensionless radial stress versus time at different 

positions ( 0.01
τ

ξ = ) 

 

Figs. 7 and 8 respectively indicate the influence of the 

dimensionless thermal relaxation time on the variation of radial 

and circumferential stress versus time. The temperature 

presents a continuous distribution in the interior of the sphere 

when the thermal relaxation time was small. Thus, at this time, 

the stress deformation within the sphere is mainly determined 

by the acceleration generated by the dynamic thermal stresses. 

The stress peak is relatively small. As the dimensionless 

relaxation time 
τ

ξ  increases, the speed of thermal disturbance 

decays rapidly. Due to the effect of non-Fourier heat 

conduction result to great temperature gradient, it is clearly 

seen in Fig. 4. Under the effect of the great temperature 

gradient, various points along the sphere’s periphery are 

squeezed together by the effects of thermal expansion, thus 

creating a larger peak stress. When the speed of the propagated 

thermal wave is finite the delay generates a non-Fourier heat 

conduction effect which increases the impact of the dynamic 

shock as the speed of the material deformation accelerates. This 

leads to the formation of large amplitude stress distributions 

within the sphere. 
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Fig. 6 Curves of dimensionless circumferential stress versus time at 

different positions ( 0.01
τ

ξ = ) 

 

 

Fig. 7 Curves of dimensionless radial stress versus time for different 

dimensionless thermal relaxation times ( 0.1η = ) 

 

 

Fig. 8 Curves of dimensionless circumferential stress versus time for 

different dimensionless thermal relaxation times ( 0.1η = ) 

V. CONCLUSIONS 

The residual correction method based on the maximum 

principle in combination with the finite difference method was 

verified for solving the dynamic stress response in a solid 

sphere under thermal shock. The proposed residual correction 

method is found to effectively identify upper and lower 

approximate solutions. The residual correction values at every 

grid point can be handled simultaneously in the solution 

process without requiring additional iterations. In addition to 

producing mean approximate solutions with acceptable 

numerical accuracy, the method allows us to estimate the range 

of maximum possible error between the approximate and exact 

solutions and to avoid a blind increase in the calculation grid 

points to obtain more accurate approximate solutions. 

Based on the non-Fourier heat conduction effects under rapid 

heating, the mathematical models about temperature fields, 

displacement fields and stress fields of the spherical material 

under thermal shock are established by the hyperbolic heat 

conduction equation and the thermo-elastic governing 

equation. It is shown that the distribution of thermal stress filed 

caused by the lagging phenomena of heat flux is different from 

the traditional distribution, and the stress peak is also higher 

than the result of traditional heat conduction. 

From the calculated results we can observe that there is a 

concentration of dynamic stress at the center of a solid sphere 

and periodical oscillation due to the reflection of stress waves at 

the sphere’s external boundary. The simulation shows the effect 

of the non-Fourier heat conduction causes the speed of the 

thermal disturbance to decay rapidly as the dimensionless 

relaxation time increases. Under the effect of superposition of 

the incident and reflected waves, the periodic stress field 

distribution inside the sphere presents alternating tensile and 

compressive stresses. Closer center of the sphere, the stress 

peaks increase. Moreover, the front of the elastic wave in the 

center of the sphere is continuously pooled and collided causing 

the formation of the stress concentration at the center of the 

sphere when the thermal-elastic wave propagates to the interior 

of the sphere. Peak stress increases rapidly with the thermal 

relaxation time. 
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