
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3536


Abstract—In this paper, we propose two algorithms to optimally

solve makespan and total completion time scheduling problems with
learning effect and job dependent delivery times in a single machine
environment. The delivery time is the extra time to eliminate adverse
effect between the main processing and delivery to the customer. In
this paper, we introduce the job dependent delivery times for some
single machine scheduling problems with position dependent learning
effect, which are makespan are total completion. The results with
respect to two algorithms proposed for solving of the each problem
are compared with LINGO solutions for 50-jobs, 100-jobs and 150-
jobs problems. The proposed algorithms can find the same results in
shorter time.

Keywords—Delivery times, learning effect, makespan,
scheduling, total completion time.

I. INTRODUCTION

N some manufacturing stages, the processing time of a job
is exposed to external effects. In some electronic

manufacturing processes, an electronic component in the
electromagnetic field requires an extra time in order to
eliminate any adverse effects. This additional time period was
first introduced by Koulamas and Kyparisis [1] and entitled as
the past sequence dependent (PSD) delivery times. Koulamas
and Kyparisis [1] tried this new concept with several single
machine scheduling problems, makespan minimization
problem, maximum lateness, maximum tardiness and
minimization the number of tardy jobs. They [1] reduced the
problems, with the exception of the makespan minimization
problem, to their original formulation (without the PSD
delivery times). Recently, many researchers [1]-[8] have
worked a variety of scheduling problems which consider PSD
delivery times on both single-machine and/or multi-machine
settings. In the scheduling literature, some researchers have
worked scheduling problems PSD under some effects such as
learning effect and/or deterioration. The joint feature of these
all studies is the common of PSD normalizing coefficient for
all jobs. Shen and Wu [6] consider polynomial time
procedures to solve single machine PSD delivery times
scheduling with general position dependent and time
dependent learning effects. Liu [5] proposes the minimizing of

M. D. Toksarı is with the Erciyes University, Engineering Faculty,

Industrial Engineering Department, Kayseri, Turkey (phone: +90 352
4374901/32457; fax: +90 352 4375784; e-mail: dtoksari@erciyes.edu.tr).

B. Uçarkuş, was with Erciyes University, Engineering Faculty, Industrial
Engineering Department, Kayseri, Turkey (e-mail: berrinucarkus@
erciyes.edu.tr).

total absolute deviation of job completion times, the total load
on all parallel machines and the total completion time with the
PSD delivery time and learning effect. Liu et al. [4] present
polynomial algorithms for the problem with the total
workload, the total completion time, the total absolute
differences in completion times with past-sequence-dependent
delivery times and a deterioration effect. Yang et al. [8] focus
on a set of single machine problems with PSD delivery times
and both effects (learning and deterioration effect)
simultaneously. In this paper, we introduce two single-
machine scheduling problems, makespan and total completion
times, with job dependent PSD delivery times under general
position dependent learning effect. The basic difference
between this paper and other studies is that the PSD
normalizing coefficient should not be common for all jobs.

II. PROBLEM DESCRIPTION

In the classical scheduling theory, job processing times are
assumed as a constant. However, workers of many real life
production systems are exposed to a process of learning [11]-
[13]. The repetition of similar operations induces a process of
specialization and workers acquire better skills. Mosheiov [9]
introduced the common terminology for this phenomenon
which is ‘learning effect’. Biskup [10] was the first to
investigate the learning effect in the context of scheduling. He
assumed that the processing time of a job decreases depending
on a function of the number of jobs previously processed on
the same machine setting. Biskup [10] considered the
following model as actual processing time

     a

jrj rpp  (1)

where  rjp is actual processing time of job J scheduled in

position r and jp is basic processing time. a  0a is the

learning index. Moreover, assumptions in [1], the processing
of job  rjJ must be followed the job based PSD delivery time

 rjq , which can be formulated as

      





1

1

r

i
ijjrjjrj pWq   nj ,...,1 (2)

Solution Approaches for Some Scheduling Problems
with Learning Effect and Job Dependent Delivery

Times
M. Duran Toksarı, B. Uçarkuş

I

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3537

where 0j is the normalizing coefficient of a job and  rjW

is the waiting time of job  rjJ .   01 jW , since all jobs in a

single machine setting with a continuously available machine
time are available for processing at time zero.

This paper presents the minimization of two scheduling
objectives: makespan  njCC j ,...2,1maxmax  and the total

completion time  jC . We denote all problems using three

field notation scheme  [14].

III. THE MAKESPAN AND TOTAL COMPLETION TIME

SCHEDULING PROBLEMS WITH JOB BASED PSD DELIVERY

TIMES AND LEARNING EFFECT

We assume that there are given n jobs and single machine,
and each machine can handle one job at a time and preemption
is not allowed. In the scheduling literature, both makespan and
total completion time under general position dependent
learning effect  max1 CLE and CLE1 can be solved

optimally by sequencing jobs in non-decreasing order of their
processing times (SPT rule) (see Theorem 1 and Theorem 2)
[9]. Furthermore, these scheduling problems under PSD
delivery times (with the common of PSD normalizing
coefficient) and general position dependent learning effect

 max,1 CqLE psd
 and CqLE psd,1 can be solved optimally by

SPT rule [15]. In this paper, in order to solve makespan with
job based PSD delivery times and position dependent learning
effect, we propose an algorithm as follows

Theorem 1. The problem   max 1 Cp j
can be solved optimally

by sequencing jobs in non-decreasing order their processing
times (SPT rule).
Proof. The proof is presented in [9].
Theorem 2. The problem

  jj Cp  1 can be solved optimally

by sequencing jobs in non-decreasing order their processing
times (SPT rule).
Proof.
The proof is presented in [9].

The Proposed Algorithm

For all jobs  nj ,...,1

Step1. Assign as job scheduled in the last position   njJ

Step2. Find the sequencing remained jobs in non-decreasing
order of

jp

Step3. Update the best
maxC  C or .

To evaluate the performance of the proposed algorithm, a
computational experiment was conducted. The proposed
algorithm was coded in Visual Studio 2010 C# (see Appendix
I for makespan problem), and these problems were modeled
with LINGO 8 software to find optimal solution (see
Appendix II for makespan problem). The computational
experiments were run by computer with 2 Duo 2.66 GHz
processor and 4.0 GB RAM. The normal processing time

jp

were generated from a random uniform distribution,
jp ~

 50 ,1U . The values for delivery times were generated from a

random uniform distribution,
j ~  1 ,0U . The proposed

algorithm for 50-jobs, 100-jobs and 150-jobs problems was
evaluated versus the optimal solution obtained by LINGO, and
each set was run 50 times. Results show that the proposed
algorithm finds sooner the same results with LINGO. Tables I
and II show the average solution times of the proposed
algorithm and LINGO for three sets (50-jobs, 100-jobs and
150-jobs) of makespan and total completion time scheduling
problems, respectively.

TABLE I

THE AVERAGE SOLUTION TIMES FOR MAKESPAN SCHEDULING PROBLEM

Problem
LINGO

Average Running Time
(second)

The Proposed Algorithm
Average Running Time

(second)
100-jobs 20.09 0.028

200-jobs 448.42 0.065

300-jobs 59489.27 0.133

TABLE II

THE AVERAGE SOLUTION TIMES FOR TOTAL COMPLETION TIME SCHEDULING

PROBLEM

Problem
LINGO

Average Running Time
(second)

The Proposed Algorithm
Average Running Time

(second)
100-jobs 22.14 0.031

200-jobs 527.08 0.068

300-jobs 71698.13 0.128

The results evinces that the proposed algorithm finds sooner

the same results with LINGO.

IV. CONCLUSION

This paper introduced single-machine problems with job
dependent delivery times and learning effect. The delivery
time was assumed to be proportional to the job waiting time.
We investigated the objectives consist of minimizing the
makespan and the total completion time when the past
sequence dependent delivery time based on the job under
position dependent learning effect. We propose an algorithm
to solve these problems, and the problems were modeled using
LINGO software to evaluate the performance of developed
algorithm. The results clearly show that the proposed
algorithm finds the same results sooner with LINGO.

APPENDIX

I. The modeling of problem using LINGO software
MODEL:
 n=100; ! Problem size;
 LE=0.8; ! Learning effect;

SETS:
 JOB / 1.. 100/;
 POSITION / 1.. 100/;
 LINK(JOB,POSITION):
 Z;
 LINK1(POSITION):

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3538

 PROCESSING_TIME,
 COMPLETION_TIME,
 S,
 TOTAL;
 LINK2(JOB):
 T,
 PROCESSING_TIME1;
ENDSETS
DATA:
 PROCESSING_TIME1= @FILE('d:\\T.txt'); ! Basic

processing time;
 T= @FILE('d:\\G.txt'); ! Gama;
 @TEXT('d:\\S.txt')=@WRITE(@OBJBND());
 @TEXT('d:\\T1.txt')=@WRITE(@TIME());
 ENDDATA
MIN = COMPLETION_TIME(n);
@FOR(POSITION(R):
 PROCESSING_TIME(R)=@SUM(JOB(

I):PROCESSING_TIME1(I)*Z(R,I)*@POW(R,(@LOG10(LE)/@L
OG10(2)))) ;

);
@FOR(POSITION(R):
TOTAL(R)=@SUM(POSITION(J)|J#LT#R:PROCESSING_TIM

E(J));
);
@FOR(POSITION(R):
 S(R)=TOTAL(R)*@SUM(JOB(I):T(I)*Z(R,I));
);
 @FOR(POSITION(R):
COMPLETION_TIME(R)=(S(R)+TOTAL(R))+(PROCESSING_

TIME(R));
);
@FOR(JOB(I): @SUM(POSITION(R): Z(R,I))=1;
);
@FOR(POSITION(R): @SUM(JOB(I): Z(R,I))=1;
);
@FOR(LINK: @BIN(Z));
END

II. C# codes for the proposed algorithms

private void button1_Click(object sender, EventArgs e)
 {
 Random A = new Random();
 textBox1.Text = "";
 textBox3.Text = "";
 listBox1.Items.Clear();
 double[] p = new

double[Convert.ToInt32(textBox2.Text)];
 double[] p1 = new

double[Convert.ToInt32(textBox2.Text)];
 double[] gama = new

double[Convert.ToInt32(textBox2.Text)];
 double[] gama1 = new

double[Convert.ToInt32(textBox2.Text)];
 double[] opts = new

double[Convert.ToInt32(textBox2.Text)];
 double[] optgama = new

double[Convert.ToInt32(textBox2.Text)];
 string s1 = "";
 string s2 = "";
 for (int i = 0; i < p.Length; i++)
 {

 p[i] = A.Next(10,50);
 s1 = s1 + " " + p[i];
 gama[i] = A.Next(1, 100);
 gama[i] = gama[i]/100;
 s2 = s2 + " " + gama[i];
 }
 StreamWriter yaz = new StreamWriter("d:\\T.txt");
 yaz.WriteLine(s1);
 yaz.Close();
 s2 = s2.Replace(',', '.');
 StreamWriter yaz1 = new StreamWriter("d:\\G.txt");
 yaz1.WriteLine(s2);
 yaz1.Close();

 double deg=0;
 double cmax = 0;
 double makespan = 1000000000000;
 for (int i = 0; i < p.Length; i++)
 {
 for (int j = i + 1; j < p.Length;j++)
 if (p[i] > p[j])
 {
 deg = p[i];
 p[i] = p[j];
 p[j] = deg;
 deg = gama[i];
 gama[i] = gama[j];
 gama[j] = deg;
 }
 }
 string s = "";
 for (int i = 0; i < p.Length-1; i++)
 {
 s = "";
 cmax = 0;
 p1[p.Length - 1] = p[i];
 gama1[p.Length - 1] = gama[i];
 for (int j = 0; j < i; j++)
 {
 p1[j] = p[j];
 gama1[j] = gama[j];
 s = s + " " + p1[j];
 }
 for (int k = i; k < p.Length-1; k++)
 {
 p1[k] = p[k+1];
 gama1[k] = gama[k + 1];
 s = s + " " + p1[k];
 }

 for (int l = 0; l < p.Length; l++)
 {
 cmax = cmax + (p1[l] * Math.Pow(l + 1,

(Math.Log10(0.8) / Math.Log10(2))));
 }
 cmax = cmax + (gama1[p.Length - 1] * (cmax-

(p1[p.Length-1] * Math.Pow(p.Length, (Math.Log10(0.8) /
Math.Log10(2))))));

 cmax = Math.Round(cmax,2);
 if (makespan > cmax)
 {
 makespan = cmax;

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:10, 2015

3539

 for (int m = 0; m < p.Length; m++)
 {
 opts[m] = p1[m];
 optgama[m] = gama1[m];
 }
 }
 s = s + " " + p1[p.Length - 1] + " = " +cmax ;
 listBox1.Items.Add(s);
 }
 for (int i = 0; i < p.Length; i++)
 {
 textBox1.Text = textBox1.Text + " " + opts[i];
 textBox3.Text = textBox3.Text + " " + optgama[i];
 }
 label1.Text = Convert.ToString(makespan);
 }

ACKNOWLEDGMENT

This research was supported by Scientific Research Fund of
Erciyes University under the contract no: FBA-2014-5397.

REFERENCES
[1] C. Koulamas, G.J. Kyparisis, Single machine problems with past

sequence dependent delivery times, International Journal of Production
Economics 126(2), 264-266, 2010.

[2] M. Liu, F. Zheng, C. Chu, Y. Xu, New results on single machine
scheduling with past sequence dependent delivery times, Theoretical
Computer Science 438(22), 55-61, 2012.

[3] M. Liu, F. Zheng, C. Chu, Y. Xu, Single machine scheduling with past
sequence dependent delivery times and release times, Information
Processing Letters 112(21), 835-838, 2012.

[4] M. Liu, S. Wang, C. Chu, Scheduling deteriorating jobs with past
sequence dependent delivery times, International Journal of Production
Economics 144(2), 418-421, 2013.

[5] M. Liu, Parallel machine scheduling with past sequence dependent
delivery times and learning effect, Applied Mathematical Modelling
37(23), 9630-9633, 2013.

[6] L. Shen, Y.B. Wu, Single machine past sequence dependent delivery
times scheduling with general position dependent and time dependent
learning effects, Applied Mathematical Modelling 37, 5444-5451, 2013.

[7] S.J. Yang, D.L. Yang, Single machine scheduling problems with past
sequence dependent delivery times and position dependent processing
times, Journal of Operational Research Society 63(11), 1508-1514,
2012.

[8] S.J. Yang, J.Y. Guo, H.T. Lee, D.L. Yang, Single machine scheduling
problems with past sequence dependent delivery times and deterioration
and learning effects simultaneously, International Journal of Innovative
Computing, Information and Control 9(10), 3981-3989, 2013.

[9] G. Mosheiov, Scheduling problems with a learning effect, European
Journal of Operational Research 132, 687– 693, 2001.

[10] D. Biskup, Single-machine scheduling with learning considerations.
European Journal of Operational Research 115, 173–178, 1999.

[11] M.D. Toksari, E. Guner, The common due date Early/tardy scheduling
problem on a parallel machine under the effects of time dependent
learning and linear/ nonlinear deterioration, Expert Systems with
Applications 37(1) (2010) 92-112.

[12] M.D. Toksari, E. Guner, Parallel machine scheduling problem to
minimize the earliness/tardiness costs with learning effect and
deteriorating jobs, Journal of Intelligent Manufacturing 21(6) (2010)
843-851.

[13] M.D. Toksari, A branch and bound algorithm for minimizing makespan
on a single machine with unequal release times under learning effect and
deteriorating jobs, Computers and Opeations Research 38(9) (2011)
1361-1365.

[14] R.L. Graham, J.K. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan,
Optimization and approximation in deterministic sequencing and
scheduling: a survey, Annals of Discrete Mathematics 5, 287-326, 1979.

[15] S.-J. Yang, C.-J. Hsu, T.-R. Chang and D.-L. Yang, Single-machine
scheduling with past-sequence dependent delivery times and learning

effect, Journal of the Chinese Institute of Industrial Engineers, vol.28,
pp.247-255, 2011.

