International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:10, 2015

Automating Test Activities: Test Cases Creation, Test
Execution, and Test Reporting with Multiple Test
Automation Tools

Loke Mun Sei

Abstract—Software testing has become a mandatory process in
assuring the software product quality. Hence, test management is
needed in order to manage the test activities conducted in the
software test life cycle. This paper discusses on the challenges faced
in the software test life cycle, and how the test processes and test
activities, mainly on test cases creation, test execution, and test
reporting is being managed and automated using several test
automation tools, i.e. Jira, Robot Framework, and Jenkins.

Keywords—Test automation tools, test case, test execution, test
reporting.

1. INTRODUCTION

OFTWARE testing is an important aspect of software

quality assurance. It is an evaluation process of a software
item to detect differences between the given input and the
expected output. The testing result is then used to provide
stakeholders with information about the quality of a product or
service under test.

The terms “Verification” and “Validation” are frequently
used in the software testing world. “Verification” is to ensure
that the product is being built according to the requirements
and design specifications. It is to ensure that work products
meet their specified requirements. “Validation” is to ensure
that the product actually meets the user’s needs, and that the
specifications were correct in the first place. It is to
demonstrate that the product fulfills its intended use when
placed in its intended environment [1].

In this paper, there are three main software testing activities
discussed, mainly on Test Planning, Test Execution, and Test
Reporting. Test planning involves scheduling and estimating
the system testing process, establishing process standards and
describing the tests that should be carried out [2]. Once the
test plan is finalized, test engineers may proceed with test
design and test cases creation. Test execution includes the
execution of test cases or test scripts, manually or in an
automated way [3]. Test reporting is to communicate the test
results and findings to the project stakeholders so that
decisions can be made for the software release [4].

II. THE CHALLENGES

The following are the analysis of the challenges faced in the

Loke Mun Sei is with the Corporate Customer Quality & Strategic
Initiatives department of MIMOS Berhad, Kuala Lumpur, Malaysia (e-mail:
ms.loke@mimos.my).

three main software testing activities:

A. Resource and Effort Estimation

It estimates the resources and time required for all the test
activities performed during Software Test Life Cycle
irrespective of the size of the testing task. The calculation of
test estimation can be based on past experiences or past data,
documents or knowledge available, assumption and risks. It is
always difficult to have an accurate estimation especially
when the testing task required some business domain
knowledge and the test engineers are new to the business
domain and often it requires some time buffering for learning
curve before they can be involved in the testing activities.

If there are automation scripts or automated test cases in
place, the new test engineer can just trigger the test automation
execution and get the test result with minimum business
domain knowledge required. This will eliminate the learning
curve time and indirectly makes the effort estimation becomes
more accurate.

B. Lack of Skilled Test Engineers

The testing in general often involves manual tasks. The test
engineer creates test cases and executes the test cases
manually, step by step and indicates whether a particular step
was accomplished successfully or whether it failed. It is very
much depends on the individual’s domain knowledge and
testing skill. One test engineer may approach and perform a
test differently than another, thus, operating personnel human
error can occur easily if it is all done manually. Besides, poor
domain knowledge of test engineers can end up in ineffective
test scenarios, test scripts and post implementation defects.

There was a quote from Elizabeth Hendrickson, “Most good
testers have some measure of technical skill such as system
administration, databases, networks, etc. that lends itself to
gray box testing”. A good test engineer should have both
technical and non-technical skills. The better understanding of
the application is, the better the bugs raised will be. If a test
engineer can understand what a stack trace is and why it is
happening, the more effective he/she will be in
communicating what has happened and why to the developers.

C. Lengthy Test Execution and Reporting Time

During the test execution phase, there might be several test
iterations involved. Test engineers execute the test cases and
report the test result manually. If the test result is failed,
developers will fix the reported issue and test engineers will
then retest and verify the same test cases. It is time consuming

2213

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942
Vol:9, No:10, 2015

if the same test cases were to be manually executed in each
and every of the test iterations and also during the regression
test phase.

Since the allocated time for testing is limited and the mobile
application needs to be published to the market within budget
and time, it is usually impossible for test engineers to retest all
of the existing test cases. The usual workaround would be to
prioritize and to select and test a small subset of the existing
test cases based on the timeline available. As a result, the test
coverage would be reduced and the risk of defects escaping
during the test phase could be alarming and very high.

III. THE SOLUTION

Test automation with the objective to address the challenges
mentioned earlier while maintaining the quality of the product
or service is needed. Hence, we use combination of several
automation tools to help automating our test processes.

A. Test Cases Creation: Automate Using Robot Framework

Robot Framework is a generic, application and technology
independent framework. The test data is in simple, easy-to-
edit tabular format. When Robot Framework is started, it
processes the test data, executes test cases and generates logs
and reports. The core framework does not know anything
about the target under test, and the interaction with it is
handled by test libraries [5].

Test Data

Test data syntax

Robot Framework

Test library API

Test Libraries

Test Tools

System Under Test

Application interfaces

Fig. 1 Robot Framework Architecture

Robot Framework supports both internal and external
libraries that can be used to automate test cases cover for the
front-end GUI web application (Selenium), back-end testing
(SSH, Database), Windows application (Autolt), mobile
application (Android, I0S), etc.

The following example demonstrates how the manual test
case created in Jira is automated using Robot Framework
script.

e Fig. 2 shows the manual test case for user login steps
(Procedures) and its expected result (Expected Outcome)

e Fig. 3 shows the automated test case using Robot
Framework script based on the test steps and expected
result

Robot Framework utilizes the keyword-driven testing
approach and the automation script is written in spaces/tabs
separated plain text format. The number of spaces used as

separator can vary, as long as there are at least two spaces (or
use tab), and it is thus possible to align the data nicely.

KRSTE.my R4 / KRSTE-426
[Sanity Test] User successful login

ZEdt Assign Assign ToMe Comment More Actions v Fail Pass Workflow ~

Details

Type Test Case Status @ TestIn Progress.
Priority £ Major Resolution: Fived

Affects Version/s KRSTEmy R4D Fix \ersion/s KRSTE.my R4.0
Components None

Labels: None ¢

Automation Automated

Area. Functional

Procedure(s) 1. Open web browser.

2. Type KRETE.my URL into the wizb browser.
3. User enters the valid screen name and password.
4. User click on Sign In button

Precondition(s) 1.User will see welcome screen to KRSTE my.

2.Valid screen name and password must be entered by the user

| Expectea Outcame: User can access the system |

Fig. 2 Manual Test Case

#kh Satcings W
Documencacion User successful login

w&% Variables ###

sqwar_to_srowszy [N
${username} I
e |

#%% Heywords *=*

wkw Tesr Cases ww+
Login to Web
${URL_TO_BROWSE}
m Timeout 180
Welcome to KRSIE Release 4, Please Click Here
dont_wait

username §{username}

password ${password}

Button submit

Page Should Con n

§ (BROWSER}

Welcome,

Logout from Web
Click Link css=a[title="Click Heze To Logout "]

[Teardown] Clese Browser

Fig. 3 Robot Framework Automation Script

Testing capabilities of robot Framework can be extended by
test libraries and users can create own keywords using the
same syntax as per the test automation script syntax.

*#%#% Settings #**+%
Library SeleniumLibrary
Library OperatingSystem

*%% Variables ###%

${URL_TO_BROWSE} I
Siussrnans! I
${password} '
#*x Feywords «x*

User Login
Open Browser ${URL_TO BROWSE} §{BROWSER}
Set Selenium Timeour 60
Click Link Welcome to KRSTE Release 4, Please Click Here
Click Link cpen dont_wait
Input Text _username ${ugernamg}
Input Text _password §{password}
Click Button submit

User Logout

Click Link &a3g=a[title="Click Here To Logout "]

Fig. 4 Sample Own Keywords Developed

B. Test Execution: Trigger Using Jenkins

Jenkins is an application that monitors executions of
repeated jobs, such as building a software project or jobs run
by cron. Among those things, current Jenkins focuses on the
following two jobs [6]:

2214

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:10, 2015

e Building/testing software projects continuously. It
provides an easy-to-use continuous integration system,
making it easier for developers to integrate changes to the
project, and making it easier for users to obtain a fresh
build. The automated, continuous build increases the
productivity.

e Monitoring executions of externally-run jobs, such as
cron jobs and procmail jobs, even those that are run on a
remote machine. Jenkins keeps those outputs and makes it
easy for notification when something goes wrong.

Once the Robot Framework test scripts or automated test
cases are created, we can then trigger and execute the test
using Jenkins automatically. Before the test automation script
can be triggered, a Jenkins job needs to be created. The
Jenkins job consists of the configurations/settings and
commands to run the test automation scripts. Sample Jenkins
job that is ready to be triggered is as shown in Fig. 5.

4 Back o Dashboard

Project Robot_Jenkins_Jira_Integration

This build requires parameters:
1 test_case AL .
[y workspace
KRSTE-425
) suitd now

KRSTE-427
KRSTE-423

O, status

> Changes

(© Delete Froject
b Confiqure
[Dependency Gragh

96 120 Confia iory

7] eotscn
Fig. 5 Sample Jenkins Job to Trigger Test Execution

A test engineer just need to select the test case (select all
test cases or a particular test case) and click on the “Build”
button and the test case(s) will be executed automatically.

Jenkins job can also be scheduled to run automatically. It
can be done by setting up the cron job in Jenkins using "Build
periodically" feature. Jenkins Cron job format is in Unix-like
computer operating systems as shown in Fig. 6.

Field Mandatory? Allowed Allowed special Remarks

name values characters

Minutes Yes 0-59 *I.-

Hours Yes 0-23 -

Day of Yes 1-31 *L-2LW

month

Month Yes 1-120r *7,-
JAN-DEC

Day of Yes 0-60r FLL-2L#
week SUN-SAT
Year No 1970-2099 *7,- This field is not supported in

standard/default implementations.

Fig. 6 Jenkins Cron Job Format [9]

C.Test Reporting — Test Case Execution Detailed Logs:
Using Robot Framework Plugin

Robot Framework plugin collects and publishes Robot
Framework test results in Jenkins [8]. Fig. 7 shows the sample
plugin configuration.

Post buid Actions

Publish Eobot Framework lest results L]

Directory of Robot ot jroatirabot/samalel$57a_no

o o e mnon =

Fig. 7 Sample Robot Framework Plugin Configuration

With Robot Framework plugin, a summary report file and a
detailed test case execution log is available after each test case
execution. A summary report file contains an overview of the
test execution results in HTML format. They have statistics
based on tags, executed test suites, and a list of all executed
test cases.

When both reports and logs are generated, the report has a
link to the log file (log.html) for easy navigation to more
detailed information.

The log file contains details about the executed test cases in
HTML format. They have a hierarchical structure showing test
suite, test case, and keyword details. The log file contains a
detailed status on each of the test step whether it is failed or
passed. Its detailed status will then help in doing debugging or
investigation later. Even though log files also have statistics,
reports are better for getting a higher-level overview as in the
summary report file.

The sample summary report file and detailed test case
execution log file is shown in Fig. 8 (for failed test case), Fig.
9 (for passed test case), and Fig. 10 respectively.

2 oriticel tosta failod
User aucosesful login
20140800 15:27:30.487
30140808 15:7:44.181
00:00:13.684

log.mi

Totals || Taga || Suites | Search |
Type: O Grities) Tsztz
O Al Teats

Fig. 8 Sample Summary Report File (Failed Test Case)

2215

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:10, 2015

MPAS-2 Test Report zmsasns:%;zsch;m

‘asys 3 nours age.

Summary Information

Status: All tegtz passsd
Documentation MPAS-2 Ussr ahls to login
Start Time: 20150303 10:12:16.135
End Time: 20150203 10:12:32.427
Elapesd Time: 00:00:16.202

Log Fils: log htmi

Displaying issues 1 10 1 of 1 malching isues.

Displaying issues 1 to 1 of 1 malching issues.

Locemunse Losuunse [Testin Prooress | Fues MU Wt 20

Test Statistics

[Total Statistica

Displaying issues 110101 1 matching issues

Fig. 9 Sample Summary Report File (Passed Test Case)

KRSTE-426 Test Log 20140008 15:27:44 G 050

4 5s00n0s a0

Test Statistics

[Total Statistics <] Total <] Pess :| Fail | Elapeed:| Pasa/Fail |

[
|critical Testa. |2 [o [z | oocoid |eesoe
[&N Teata 2 [o [2 | oocoid |e—————
Statistica by Teg #[Total | Pass <] Fail <] Elapssd<| PassiFail |
No Tags | | | | Ic 1|
| Total ;| Pass <[Fail | Elapssd:] Pass/Fail |

I

Statistics by Suits <]
KRSTE-428

Test Execution Log

2| o | 7 | 000014 |eos

[TEST SUITE: KRSTE-428

Full Nama: KRSTE428

Documentation: Ussr succssstul login

Sourcs: rootirobot MRS TE_R4/KRSTE-428.6t

Start/ End / Elepasd: 20140808 15:27:30.457 / 20140806 15:27:44.181 / 00:00:13.604
Status: 2 crfical teat, 0 passad. 2 failed

2 1eetotal, O pssssd, 2 feiled

1 TEST GASE: Login to Web

Full Name: KRSTE-426 Login to Web

Start/ End / Elepesd: 20140308 15:27:30.842 / 20140808 15:27:43.403 00:00:12.781
Statua: FAIL (critical)

Meszags: Page should have contsined text Walcome,' but did not

[KEYWORD: common_resource.Ussr Login

Start/End/Elspesd: 2014030¢ 15:27:30,045 | 20140508 152742012/ 00:00:1.360

E] KEVWORD: SslaniumLibrary Open Browssr S{URL_TO_BROWSE), S{BROWSER)

Documentation, Opens & new browser instanos to gven URL

20140800 15:27:20.045 / 20140300 15:27:36.007 | 00:00108.052
INFO Opening browser '*firefox' to base url 'EEEEEEESSSNESENNNES'
D: SeleniumLibrary. Set Selenium Timeout 120
eticn, Ssts the fimsaut ussd by various keywords
Slrt/End/Elapsed: 20140800 15:27-35.007 / 20140800 15:27:38. 713 0010000018

Fig. 10 Sample Detailed Test Case Execution Log

D.Test Reporting — Test Case Status: Update Using Jenkins
Jira Issue Updater Plugin

Jenkins Jira Issue Updater Plugin is a Jenkins plugin which
updates issues in Atlassian Jira by changing their status and
adding a comment as part of a Jenkins job [7]. Fig. 11 shows
the sample plugin configuration.

fced vers

be sdded (deimaed by comma) 0

Fig. 11 Sample Jenkins Jira Issue Updater Plugin Configuration

When the Jenkins job is triggered, it will update the Jira
status automatically based on the test execution result, as
shown in Fig. 12:

<] Total :| Pase :| Fail <] Elapsed:| Pass/Fail |
[Grtical Tests 7 [0 | 0 | oonis | R LoeMnSe LotelunSei & Fues M OV 20Nt
[Teste [+ T + [o 1 owoeis |E‘ Displaying issues 110 1 of 1 matching issues
[iatica by Tag <[Totel ;[Pess <[Fail :| Elapsed:| Pess/Fail |
[fioTage I I I I —]
[Statistica by Suite <[Totel ;[Pass :| Fail :| Elapsed:| Pess/Fail | . . 3
= 7 | + | o | oemw Fig. 12 Jira Status Updated Automatically
Teat Detaile
Totels | [Toge | [Sutes | [Somch | IV. CONCLUSION AND FUTURE WORKS
Type: O Gritical Teats
O Al Teats

From the study and research, it clearly shows that the test

automation has a great impact on the test activities conducted.

Resource and effort estimation: Since the software testing
activities are now automated, it can then eliminate the test
engineers learning curve time and indirectly makes the test
effort estimation becomes more accurate.

Lack of skilled test engineers: Minimum business domain
knowledge is required to run the automated test scripts or
test cases and thus minimize the personnel human error.
Lengthy test execution and reporting time: Test execution
and reporting is no longer done manually and thus it
shortens the test cycle time.

For future work, we plan to integrate with development

team so that when development team has changed the codes, it
will trigger the automation job to build the changed
component, deploy the newly build component to the test
server, and then run the existing test cases automatically and
publish the result. This could be beneficial to both the
development and test team to verify which build is working
and which is not, and it is also easier to track and to debug on
the broken build.

(1

[2]
[3]
(4]
[3]

(6]
(7]

(8]

[

REFERENCES

STF, “Verification and Validation: Definition, Differences, Details” in
http:/softwaretestingfundamentals.com/verification-vs-validation/,
August 11,2011

Ian Sommerville, “Test Planning” in http://ifs.host.cs.st-
andrews.ac.uk/Books/SE9/Web/Testing/Planning.html, 2008

Capture Plc., “Test Design & Execution” in
http://capture.hu/services/Test-Design-Execution/46/, 2010

Ioan Mihnea IACOB and Radu CONSTANTINESCU, “Testing: First
Step Towards Software Quality” in JAQM, vol. 3, No. 3, 2008, pp. 3
Python Software Foundation, “Robot Framework” in
https://code.google.com/p/robotframework/, 1990

Kohsuke Kawaguchi, “Jenkins” in http://jenkins-ci.org/, 2013

Laszlo Miklosik, “Jenkins Jira Issue Updater Plugin”, in
https://github.com/jenkinsci/jira-issue-updater-plugin, 2011

Rishab Jain C and Rajesh Kaluri, “Design of Automation Scripts
Execution Application for Selenium Webdriver and TestNG
Framework” in ARPN Journal of Engineering and Applied Sciences,
VOL. 10, NO. 6, APRIL 2015; pp. 2

Rajesh Kumar, “Setting wup cron job in Jenkins” in
http://www.scmgalaxy.com/index.php?option=com_k2&view=item&id
=894:setting-up-the-cron-jobs-in-jenkins-using-build-periodically-
scheduling-the-jenins-job&Itemid=120, 2014

2216

