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 
Abstract—In the present study, analysis of heat transfer is carried 

out in the slip flow region for the fluid flowing between two parallel 
plates by employing the asymmetric heat fluxes at surface of the 
plates. The flow is assumed to be hydrodynamically and thermally 
fully developed for the analysis. The second order velocity slip and 
viscous dissipation effects are considered for the analysis. Closed 
form expressions are obtained for the Nusselt number as a function of 
Knudsen number and modified Brinkman number. The limiting 
condition of the present prediction for Kn = 0, Kn2 = 0, and Brq1 = 0 
is considered and found to agree well with other analytical results. 
 

Keywords—Knudsen Number, Modified Brinkman Number, Slip 
Flow, Velocity Slip.  

I. INTRODUCTION 

NALYSIS of heat transfer and fluid flow at microscale is 
of paramount importance due to the rapid development of 

micro/nano electromechanical systems (MEMS/NEMS) for 
increasing and widespread application in navigation, 
spaceflight and industry. At microscale the physics of fluid 
flow and heat transfer changes substantially. Especially, the 
need for high heat fluxes in small electronic and other devices 
has triggered the microscale heat transfer to be the subject of 
interest in the last decade. As of today, more theoretical 
studies and devotion are essential to advance the microscale 
heat transfer field. 

In general, the effect of small length scales of micro-devices 
on the flow condition can be explained by using a parameter 
termed as Knudsen number (Kn) and it is aptly defined as the 
ratio of the mean free path to the characteristic dimension of 
the system. Beskok and Karniadakis [1] defined four different 
flow regimes based on the value of the Knudsen number such 
as: the continuum flow regime for 0.001Kn ; the slip regime 

for 0.001 0.1;Kn  transition regime for 0.1 10Kn  ; and 

molecular flow regime for 10.Kn  The slip flow regime is 
essentially characterized by velocity slip and temperature 
jump at the wall and these effects strappingly influence the 
heat transfer. In order to model the fluid flow in the slip 
regime, Navier-Stokes and energy equations can be coupled 
with the appropriate set of hydrodynamic and thermal 
boundary conditions along with velocity slip and temperature 
jump effects. In addition, analysis of the heat transfer and fluid 
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flow can be carried out by considering the effect of 
rarefaction, axial conduction and viscous dissipation. The 
viscous dissipation features as a source term in the fluid flow 
due to the conversion of the kinetic motion of the fluid to the 
thermal energy and causes variation in the temperature 
distribution. The viscous dissipation can have an antagonist 
effect on the heat transfer and can distort the temperature 
profile severely [2]. 

The increasing trend of miniaturization in devices has led to 
studies in microscale heat transfer and fluid flow, since 
thermal behavior in the microdevices may deviate 
significantly from continuum [3]. In view of this, various 
experimental and theoretical studies [4]-[16] have been 
reported to model the fluid flow and heat transfer 
characteristics in micro-systems. In this paper, an analytical 
investigation is carried out to investigate the heat transfer 
characteristics for the fluid flowing between parallel plates by 
employing the different constant heat fluxes at the walls in the 
slip flow regime. The application of the constant or different 
heat flux condition may be observed for different areas such 
as: electronic cooling, electric resistance heating, and radiant 
heating. Therefore, interactive efforts have been made to 
accomplish closed form expressions for the dimensionless 
temperature distribution and the Nusselt number as a function 
of Knudsen number and modified Brinkman number, which 
could be useful for assessing heat transfer characteristics at 
microscale under asymmetric heating conditions.  

II. THEORETICAL ANALYSIS 

The flow between parallel plates is assumed to be laminar, 
steady, fully developed both hydrodynamically and thermally 
with constant properties.  

 

 

Fig. 1 Schematic of parallel plates 
 

The axial heat conduction is assumed to be negligible both 
in the fluid and through the wall. The thermal conductivity and 
diffusivity of the fluid are considered to be independent of 
temperature. The plates are distanced at W or 2w, as shown in 
Fig. 1. 
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Utilizing the assumptions made above, the momentum 
equation can be expressed as: 
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Subject to the following boundary conditions: 
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where, us is the velocity of fluid at the wall and F is the 
tangential momentum accommodation coefficient and can be 
taken as unity for most of the engineering applications [2].  

The dimensionless variables are defined as: 
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The fully developed velocity profile for the slip regime can 
be derived from the momentum equation by employing the 
second order velocity slip condition. From (1)-(3) the velocity 
profile can be obtained as: 
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Utilizing the assumptions made above, the energy equation 

can be written as: 
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Subject to the boundary conditions, given by: 
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In case of internal flow with heat transfer, the fluid 

temperature at any location of the duct varies in the transverse 
direction. In such a case, the mean or bulk temperature (Tm) of 
the fluid is usually used to evaluate the heat transfer 
coefficient and can be expressed as: 
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For the present configuration, with different heat flux walls 
the fully developed condition can be written as [6] 
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Further, the dimensionless variables can be defined as: 
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Utilizing (4), and (7)-(9), the governing equation in 

dimensionless form can be written as: 
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Subject to the following dimensionless boundary conditions: 
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For the fully developed condition, the temperature 

distribution is obtained by solving (10)-(11a-c) and it can be 
expressed as the function of various modeling parameters such 
as: Knudsen number (Kn), heat flux ratio (q2/q1), modified 
Brinkman number (Brq1), and is given below: 
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It may be noted that for Kn = 0, Kn2 = 0, above expression 

reduces to (13) and is identical to that obtained by various 
researchers [5], [9], [10]. 
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Using (4), (7) and (12), the bulk mean temperature ( m ) is 

obtained as: 
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For Kn = 0 and Kn2 = 0 bulk mean temperature obtained by 

the present analysis is identical to the results obtained by other 
researchers [5], [9], [10].    
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The Nusselt number is defined as: 
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Utilizing (14) and (16), the Nusselt can be written as: 
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For the case of Kn = 0 and Kn2 = 0, (17) reduces to (19) and 

is identical to that derived by [5], [9], [10] for the case of Brq1 
= 0. 
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III. RESULTS AND DISCUSSION 

This paper presents the analysis of a gaseous flow between 
parallel plates by employing different heat flux at the surface 
of the plates. The influence of velocity slip and viscous 
dissipation on heat transfer characteristics is investigated and 
explained by the Knudsen number and modified Brinkman 
number, respectively. Closed form expressions are obtained 
for the dimensionless temperature distribution and Nusselt 
number in the slip range i.e. 0.001 0.1Kn  . The verification 
of the present results is done for the case that neglect both 
viscous dissipation and micro scale effects (Kn = 0). The 
results obtained are in good agreement with those reported by 
earlier researchers [5], [9], [10].  

 

 

Fig. 2 (a) Variation of dimensionless temperature with Y at Kn = 0 
and q2/q1 = 1 

 

 

Fig. 2 (b) Variation of dimensionless temperature with Y at Kn = 0 
and q2/q1 = 5 

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5
-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Y

(Y)

 Br
q1

 = 0
 Br

q1
 = 1

 Br
q1

 = 2
 Br

q1
 = 5

(a)

Kn = 0, q
2
/q

1
=1

-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5
-4.5 -4.0 -3.5 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

Kn = 0, q
2
/q

1
 = 5

 Br
q1

 = 0
 Br

q1
 = 1

 Br
q1

 = 2
 Br

q1
 = 5

Y

(Y)

(b)



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:9, No:2, 2015

422

 

 

 

Fig. 2 (c) Variation of dimensionless temperature with Y at Kn = 0 
and q2/q1 = 5 

 

 

Fig. 2 (d) Variation of dimensionless temperature with Y at Kn = 0 
and q2/q1 = 26/9 

 
The transverse temperature variation for the given value of 

the Knudsen number, modified Brinkman number (Brq1), and 
heat flux ratio (q2/q1) is depicted in Figs. 2 (a)-(d). During 
fluid flow, the viscosity of the fluid absorbs energy from the 
motion of the fluid and transforms the same as an internal 
energy causes the change of the fluid temperature. 

The viscous dissipation causes variation in temperature due 
to internal fluid friction and it is denoted by the modified 
Brinkman number. Here, positive values of modified 
Brinkman number correspond to the wall heating case that 
indicates the heat transfer from wall to the fluid, while the 
opposite is true for the negative modified Brinkman number. 

The effect of viscous dissipation on the heat transfer 
performance for various values of Knudsen number and heat 
flux ratio is depicted in Figs. 3 (a)-(e). It may be noted that in 
the case of viscous dissipation (Brq1 ≠ 0), the profile of the 
temperature distribution gets altered compared to the case with 
no viscous dissipation (Brq1 = 0) for the given heat flux ratio 
(Fig. 3 (c)). The viscous dissipation increases the bulk 
temperature of the fluid because of the internal heating of 
fluid. For the positive modified Brinkman number, increase in 
the bulk temperature of fluid decreases the temperature 

difference between the fluid and wall (Figs. 3 (a), (b)). For the 
negative modified Brinkman number, the heat transfer occurs 
from fluid to wall leading to a decrease in the bulk 
temperature of the fluid; while the viscous dissipation 
increases the temperature of fluid (Figs. 3 (d), (e)). 

 

 

Fig. 3 (a) Variation of dimensionless temperature with Y at Kn = 0 
and Brq1 = 1 

 

 

Fig. 3 (b) Variation of dimensionless temperature with Y at Kn = 0 
and Brq1 = 5 

 

 

Fig. 3 (c) Variation of dimensionless temperature with Y at Kn = 0 
and Brq1 = 0 
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Fig. 3 (d) Variation of dimensionless temperature with Y at Kn = 0 
and Brq1 = -1 

 

 

Fig. 3 (e) Variation of dimensionless temperature with Y at Kn = 0 
and Brq1 = -5 

 
Fig. 4 (a) illustrates the variation of Nusselt number (Nu) 

with modified Brinkman number for various heat fluxes ratios 
(q2/q1 = 0, 1, 26/9, 5) at Kn = 0. It is observed that Nusselt 
number decreases with the increase in modified Brinkman 
number. The variation in the Nusselt number is found to be 
discontinuous and the point of singularity is observed 
(discontinuity in behavior) at different points for various cases 
of asymmetric wall heating condition. For Kn = 0, the point of 
singularity with various heat flux ratios can be evaluated from 
(17). The point of singularity for q2/q1 = 26/9 and q2/q1 = 5, is 
obtained at Brq1 = 0.0001865 and Brq1 = 0.35186, respectively, 
as shown in Fig. 4 (a). It may be noted that as the asymmetric 
heating increases, the difference in temperature increases for 
the given values of the modified Brinkman number at any 
transverse location. For Kn = 0.02 the point of singularity for 
q2/q1 = 26/9 and q2/q1 = 5 is obtained at Brq1 = 0.0559 and Brq1 
= 0.6566, respectively and is shown in Fig. 4 (b). Similar 
observations have been made for Kn = 0.04 and are depicted 
in Fig. 4 (c). 

 

 

Fig. 4 (a) Variation of Nusselt number with modified Brinkman 
number at Kn = 0 

 

 

Fig. 4 (b) Variation of Nusselt number with modified Brinkman 
number at Kn = 0.02 

 

 

Fig. 4 (c) Variation of Nusselt number with modified Brinkman 
number at Kn = 0.04 

 
Here, the singularity point signifies that the heat generated 
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the wall to the fluid. In addition, for a given heat flux ratio 
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become equal to the imposed wall temperature. In such a case, 
no heat transfer takes place in either direction and results in an 
unbounded swing in the Nusselt number as seen in Figs. 4 (a)-
(c). However, from the point of singularity, with the increase 
in Brq1 (Brq1>0), Nusselt number decreases because of the 
decrease in the driving potential for the heat transfer and 
attains an asymptotic value (Brq1 → ∞, Nu→ 0). With the 
increase in the heat flux ratio, more heat is conducted to the 
fluid therefore, more viscous energy is needed to balance the 
heat supplied by the external source. This results in a shifting 
of the singularity point from lower to the higher modified 
Brinkman number (Brq1) with the increase in the heat flux 
ratio from q2/q1 = 26/9 to q2/q1 = 5. 

IV. CONCLUSIONS 

In the present analytical investigation closed form 
expressions are obtained to study the heat transfer 
characteristics for the fluid flowing between parallel plates in 
the slip flow region by employing the asymmetric heat fluxes 
at upper and lower plates. The expressions are obtained for the 
temperature distribution and Nusselt number as the function of 
various modeling parameters including viscous dissipation and 
second order velocity slip effect. Based on the analysis, 
following conclusions have been made: 
 The viscous dissipation is found to distort the transverse 

temperature distribution, substantially.  
 The heat transfer characteristics are found to depend on 

various parameters, namely, modified Brinkman number, 
Knudsen number and heat flux ratio.  

 The variation of the Nusselt number is found to be 
discontinuous having singularities at a specific modified 
Brinkman number for each Knudsen number.  

 With the increase in heat flux ratio and Knudsen number 
both, the onset of singularity point shifts towards the 
higher value of the modified Brinkman number.  

NOMENCLATURE 

a1  Parameter defined in (10) 
Brq1 Modified Brinkman number,  
cp  Specific heat at constant pressure, J/kg-K 
h  Convective heat transfer coefficient, W/m2-K 
k  Thermal conductivity, W/m-K 
Kn Knudsen Number, λ/W 
L  Width of the plate, m 
Nu  Nusselt number 
q1  Upper wall heat flux, W/m2 
q2  Lower wall heat flux, W/m2 
T  Temperature, K 
T1  Upper wall temperature, K 
T2  Lower wall temperature, K  
u  Velocity, m/s  

us  Slip velocity,
2 2

2

2

2
y w y w

F u u

F y y


 

        
     

, m/s 

U  Dimensionless velocity 
w  Half channel height, m 
W  Channel height, (= 2w), m 

x  Co-ordinate in the axial direction, m 
y  Co-ordinate in the vertical direction, m 
Y  Dimensionless vertical co-ordinate, m 

Greek Symbols 

α  Thermal diffusivity, m2/s 
θ  Dimensionless temperature 
θm  Mean dimensionless temperature 
λ  Molecular mean free path, m 
μ  Dynamic viscosity, kg/m-s 
ρ  Density, kg/m3 

Subscripts 

c  Centerline 
e  Fluid entering 
m  Mean 
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