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Abstract—This article presents the main results of a numerical 

investigation on the uncertainty of dynamic response of structures 

with statistically correlated random damping Gamma distributed. A 

computational method based on a Linear Statistical Model (LSM) is 

implemented to predict second order statistics for the response of a 

typical industrial building structure. The significance of random 

damping with correlated parameters and its implications on the 

sensitivity of structural peak response in the neighborhood of a 

resonant frequency are discussed in light of considerable ranges of 

damping uncertainties and correlation coefficients. The results are 

compared to those generated using Monte Carlo simulation 

techniques. The numerical results obtained show the importance of 

damping uncertainty and statistical correlation of damping 

coefficients when obtaining accurate probabilistic estimates of 

dynamic response of structures. Furthermore, the effectiveness of the 

LSM model to efficiently predict uncertainty propagation for 

structural dynamic problems with correlated damping parameters is 

demonstrated.  

 

Keywords—Correlated random damping, linear statistical model, 

Monte Carlo simulation, uncertainty of dynamic response. 

I. INTRODUCTION 

AMPING is an important factor in the response analysis 

and design of dynamically sensitive structures. This has 

been commonly addressed in structural design through the 

deterministic use of average damping values without specific 

attention to the uncertainty associated with this fundamental 

input parameter. However, for excitation frequencies close to 

the resonant frequencies, the sensitivity of structural response 

to damping becomes critical. In addition, the uncertainty and 

statistical correlation of damping parameters are often 

unavoidable complications.  

The uncertainty in prediction of damping in structural 

dynamics poses a serious problem to the structural analyst 

because damping, a parameter of paramount importance for 

the response and design of dynamically sensitive structures, 

does not refer unlike other system parameters to a single 

physical phenomenon, and may depend on a wide range of 

factors [1]-[3] including vibration amplitudes, nature of 

structural resisting systems, nature of underlying damping 

mechanisms, etc. This difficulty has been commonly 

circumvented in structural design through the deterministic 
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use of an average damping value to characterize the structural 

capacity of a dynamic system to dissipate energy, without 

much attention to the uncertainty in this key input parameter.    

The difficulty of an accurate prediction of damping 

emphasizes the uncertainty involved in assessing the dynamic 

response of structures. For excitation frequencies close to the 

resonant frequencies the sensitivity of dynamic response of 

MDOF structures to damping becomes critical. Errors in the 

estimation of damping matrix will generally result in large 

errors in the response. The statistical correlation of damping 

coefficients and the coupling effect of damping in the 

equations of motion are often unavoidable complications. This 

problem is of particular importance in relation to the dynamic 

response analysis of tall structures that rely on damping for 

their performance under wind [1] and earthquake ground 

motions [4]. 

In order to provide additional information for practical 

applications in engineering design, this paper show the 

influence of correlated damping parameters on the uncertainty 

of structural dynamic response. A computational method 

based on a linear statistical model is implemented to 

efficiently propagate damping through dynamic analyses to 

predict second order statistics for the response of MDOF 

structures with correlated damping parameters. The results are 

compared to results generated using Monte Carlo simulation 

techniques. The effect of variability of correlated damping 

parameters on the dynamic response in the neighborhood of a 

resonant frequency are presented for considerable ranges of 

damping uncertainties. In addition, the impact of statistical 

correlation of damping on the limits of approximation of both 

the statistical second moment model and the Monte Carlo 

simulation technique is investigated. 

II. UNCERTAINTY PROPAGATION 

In the present study the input random variables are c 

designated as c = T
ncc ],...,[ 1

. With mean value c = [ ]Tcc 21,..., , 

and standard deviations cσ = T
cnc ],...,[ 1 σσ . The response 

output function, X=X(c), is a function of the input random 

variable c, i.e. X is random field (e.g. [5]) 

Uncertainties in damping coefficients are propagated 

through the functional relationships that relate them to the 

response for determining the uncertainty of dynamic response 

estimates. Thus, to implement uncertainty of damping in the 

dynamic analysis recall that, the matrix system of differential 

equation of motion governing the displacement X(t) an n-
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MDOF discretized dynamic system subjected to an external 

excitation F(t) can be written as: 

 

[ ] [ ] [ ] )(X tFXKXCM =++ &&&                                             (1) 

 

where F is general function of time. 

A physical system described by (1) and representative of a 

typical industrial building with rigid floors is shown in Fig. 1, 

for n=5. In this system [ ]M and [ ]K are deterministic: The 

damping matrix [ ]C depends linearly on the viscous damping 

coefficients 
ic according to the definition of its elements (e.g. 

[6]).   

  
 

 

=ijC  

1++ ii cc        si    i-j=0 
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    0                si   |i-j|>0 
  

In this work uncertainty in damping, represented by the 

statistically correlated, randomly distributed damping 

coefficients according to Gamma distribution, is propagated 

using Monte Carlo simulation techniques and a statistical 

linear with correlated parameters based on sensitivity 

derivatives. 

 

 

 
 

 

      

 

 

 

Fig. 1 Five story example building with random damping 

characteristic ( ic , ciσ and cijρ ;(i=1,..,n) 

A. Definition and Properties of the Gamma Distribution 

We say c is gamma-distributed with parameters k and λ, if 

their density function has the form in (2): 
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 By integration or, by consideration of c as the sum of k 

independent exponentially distributed random variables, then: 
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In fact, the gamma distribution is more broadly defined than 

is implied by its derivation as the distribution of sum k 

independently, identically distributed exponential random 

variables. More generally the parameter k need not be integer-

valued, when the gamma distribution is written:  
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 The only restrictions are λ>0 and k >0. The gamma 

function )(kΓ is equal to (k-1)! if k is an integer, but more 

generally is defined by definite integral 
 

∫
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The integral arises here as a constant needed to normalize 

the function to proper density function. 

B. Monte Carlo Simulation 

This technique consists essentially in generating 

numerically statistical results of the response without 

performing any physical experimentation. The computer 

simulation involves sampling at random to simulate 

numerically large number of experiments and to observe the 

results. In the present case, sequence of correlated damping 

coefficients (N) Gamma- distributed with prescribed mean and 

standard deviation is first generated. The dynamic system is 

then solved for each value of the random variable ci to give a 

sample value of response Xi. These sample values are finally 

used to determinate the second order statistics of the response 

as: 
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The problem with a traditional MC simulation is that in 

order to get an accurate prediction of output mean and 

variance one may have to perform thousands of runs. The 

computation is very long and expensive (1) must be solved a 

number of times equal to N the number of iterations. 

C.  Linear Statistical Model (LSM)  

The damping coefficients 
ic are assumed to be Gamma-

distributed with mean value ic and standard deviation. The 

validity of the gamma distribution of damping and its 

probabilistic characteristics based on full scale measurement 

of buildings has been checked by [7]. Consider X as a function 

of c only and denote by X
0
 the value of X when c takes on its 

mean value c . Then the vector X can be expanded in a Taylor 

series about c= c  as: 
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where; the higher order terms have been neglected in the 

present case. 

Introducing sensitivity derivatives;  

 

kk ccjiij cX =∂∂= )/(ξ , for      k=1…n                                   (9) 

 

It can be shown (e.g., [8]) that for any distribution of input 

variables, the approximations given by the (10) and (11)   for 

the mean and variance of the output function X hold: 

 

)()( cXcX =                                                                      (10)
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where; ],[ ji ccCOV  is the covariance matrix of the pair of 

random damping variables ci and cj . Its ij
th

 element is defined 

by 
cjciijijCOV σσρ=  where 1=ijρ  if i=j. 

The elements of the main diagonal are the variance and are 

known from the assumed distribution law. The off diagonal 

elements contain the correlation 
ijρ

 

between the various 

damping coefficients. Note that when the correlation 

coefficients 0=ijρ for i≠j, the input random variables c are 

said to be uncorrelated whereas when 1=ijρ  for i≠j, they are 

said to be fully correlated. 

Various assumptions can be made regarding the partial 

correlations 
ijρ between the various damping coefficients. 

However, we prefer to give this problem which is random in 

nature, a random solution. Once the variances and correlations 

of the damping coefficients are prescribed, a Monte Carlo 

simulation of damping coefficients generates a Gamma 

distribution and a covariance matrix whose RMS of the off-

diagonal elements converge to the RMS of prescribed values. 

The off-diagonal terms of the matrix thus generated are 

assumed to represent the correlation in the system. Note that 

the computer simulation of damping coefficients using the 

Monte Carlo simulation technique is here based on a 

multivariate Gamma distribution with prescribed mean vector 
T

ncc ],...,[ 1=c and covariance matrix COVij. While the 

multivariate Gamma cumulative distribution function is not 

trivial to compute in high dimensions [9], it is available in 

commonly used software packages such as Matlab.    

The sensitivity functions ijξ  are available by differentiation 

of (1) with respect to cj as: 
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or 

[ ] [ ] [ ] [ ] Xξξξ jjj
&&&& )/( jcCKCM ∂∂−=++                       (13) 

 

The left side of (13) is identical to that of (1), and the right 

side can be interpreted as a fictitious forcing vector.  

In the case of general loading F (t), the right side of (13), 

can be obtained from the time derivative X&  of the response 

X
0
, the value of X when c takes on its mean value c . For 

systems with large numbers of degrees of freedom, the vector 

X
0
 can be computed by solving (1) with nominal damping 

jj cc = using mode superposition analysis. Alternatively, the 

vectors X and X& can be obtained systematically by using step 

by step integration methods of structural dynamics (e.g. [6]). 

Thus, to obtain the vectors ξj (j=1 …n), (1) must be solved 

first with the forcing vector F(t) after which (13) is solved, n 

times. 

Thus, the global bulk of computations involve essentially, a 

computer simulation for the evaluation of the covariance 

matrix [COV] then, the solution of (1) for X
0
, 0X& and finally 

the solution for ξj, n times. 

III. NUMERICAL EXAMPLE 

A numerical example utilizing a typical industrial building, 

modeled as a lumped mass system, is considered to predict 

uncertainty propagation and examine quantitatively the 

influence of uncertainty level in the damping on the overall 

response under dynamic excitation induced by a rotating 

machine.    

The structural system shown in Fig. 1 is taken as 

basic model for the computations. For the sake of clarity, the 

lumped mass at each floor, the inter-story stiffness and the 

mean value of inter-story damping constant between each 

level are kept constant in this study, although different values 

could be used as input. The lumped mass at each floor is equal 

to m1= m2= m3= m4= m5=150t and the inter-story stiffness 

between each level is such that k1= k2= k3= k4= k5=210*10
3
 

KN/m. The mean values c
r

 of the inter-story damping 

constants, examined in this study were (in ascending order) c  

=394.37, c =788.74, c =1183.11, c =1577.48 and c =1971.86 

KN/m/s respectively (in the example considered, these values 

correspond to 1%, 2%, 3%, 4%, 5% of critical damping 

respectively). Each value of the damping constant was 

assigned a Cov that varied from 10% to 50% with uniform 

increments of 10%. The dynamic excitation resulting from a 

rotating machine, applied at the first story is represented by a 

harmonic function of amplitude F=1400 KN and frequency 

Ω=31.09 rad/s corresponding to the second resonant frequency 

of the structural system. 
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TABLE I 

 COMPARISON BETWEEN STATISTICAL LINEAR MODEL (LSM) AND MONTE CARLO SIMULATION (MCS) METHOD FOR UNCORRELATED AND PERFECTLY 

CORRELATED DAMPING PARAMETERS

N° 

Standard deviations of 

response (ρc i,j=0) 

Standard deviations of 

response (ρc i,j=1) 

Error           

(ρc i,j=0) 

Error               

(ρc i,j=1) Mean values of 

Damping ic  

Coefficients of variation 

LSM MCS LSM MCS % % cicσ  iX Xσ
i

(SDSL) 

ρc ij =0 ρc ij =1 

1 0,895 1,037 1,717 3,174 13,77 45,91 
 

0,26 0,49 

2 1,169 1,370 2,250 4,177 14,69 46,14 
  

0,26 0,50 

3 0,645 0,749 1,230 2,283 13,88 46,12 394,37 0,5 0,26 0,50 

4 0,339 0,387 0,640 1,184 12,35 45,92 
  

0,26 0,49 

5 1,076 1,264 2,068 3,844 14,87 46,19 
  

0,26 0,50 

1 0,359 0,393 0,684 0,978 8,61 30,07     0,20 0,15 

2 0,466 0,521 0,900 1,315 10,41 31,56 
  

0,21 0,15 

3 0,265 0,290 0,494 0,720 8,44 31,33 788,74 0,4 0,22 0,15 

4 0,141 0,146 0,255 0,366 3,35 30,16 
  

0,21 0,14 

5 0,431 0,474 0,829 1,217 9,04 31,89     0,21 0,14 

1 0,181 0,185 0,340 0,40 2,42 14,22     0,14 0,10 

2 0,233 0,254 0,450 0,55 8,42 18,72 
  

0,16 0,10 

3 0,139 0,144 0,250 0,30 3,10 17,81 1183,11 0,3 0,17 0,10 

4 0,075 0,078 0,127 0,15 4,32 14,65 
  

0,16 0,10 

5 0,217 0,241 0,416 0,52 9,77 19,66     0,16 0,10 

1 0,092 0,096 0,169 0,180 4,64 5,71 
  

0,09 0,05 

2 0,116 0,123 0,225 0,247 5,33 8,64 
  

0,10 0,05 

3 0,074 0,077 0,127 0,135 3,45 6,36 1577,48 0,2 0,12 0,05 

4 0,040 0,042 0,063 0,067 5,64 5,59 
  

0,11 0,05 

5 0,110 0,118 0,209 0,232 7,51 9,91     0,11 0,05 

1 0,035 0,035 0,065 0,066 1,44 1,90 
  

0,04 0,05 

2 0,046 0,046 0,090 0,092 0,78 1,89 
  

0,05 0,05 

3 0,028 0,028 0,051 0,051 1,35 1,38 1971,85 0,1 0,06 0,05 

4 0,014 0,014 0,025 0,026 1,47 1,93 
  

0,04 0,05 

5 0,044 0,045 0,084 0,086 1,62 2,41     0,06 0,05 

 

IV. SAMPLE RESULTS AND DISCUSSION 

A. Uncertainty Propagation  

In Table I, the standard deviations of peak story 

displacement for several combinations of mean damping 

values ic  and corresponding covariance coefficients are (for 

the sake of clarity) presented for the two cases of uncorrelated 

and fully correlated damping parameters. The results obtained 

from the application of the LSM model are systematically 

compared with the corresponding results derived from the 

MCS method. It is to be noted that the two methods are in 

acceptable agreement up to Cov of damping values less than 

or equal 40% in the case of uncorrelated damping parameters 

and up to Cov of damping less than 30% in the case of 

perfectly correlated damping. Both methods are in excellent 

agreement up to Cov of damping values less than or equal 

10%. It also is observed that the covariance coefficient of peak 

story displacement response is equal to the covariance 

coefficients of damping for the case of perfectly correlated 

damping parameters whereas it is only half this value in the 

uncorrelated case, regardless of the mean damping values 

considered.    

If the uncertainty about damping is such that larger Cov 

values should be considered, the LSM becomes inadequate 

and higher order statistics based on second order sensitivity 

derivatives should be considered.  

In Fig. 2, the standard deviation of building response at the 

second floor (corresponding herein to the maximum floor 

displacement) as function of Cov of damping is presented for 

different values of correlation coefficient. It is seen that the 

uncertainty in damping influences the system response. 

Depending on the mean value of damping the effects are more 

pronounced for light damping, high variability of damping and 

strong correlation between damping coefficient.  

In Fig. 3, the standard deviation of building responses with 

light damping at the second floor is presented for both LSM 

and MCS for strong and low correlation. The results suggests 

that differences in standard deviation of building response 

obtained for both methods are insignificant for small values of 

Cov of damping. However, for larger values, the errors 

introduced by the linearization technique, increase 

concomitantly with an increase in Cov of damping. Moreover 

it should be noted that large dispersion in results between the 

LSM and MCS methods is observed for dynamic systems with 

light damping, large values of damping variability and strong 

correlation.  
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Fig. 2 Standard deviation of response (LSM) at the 2nd floor for 

different correlation coefficient with light damping ( c =197.19) 

 

 

Fig. 3 Comparison Standard deviation of response between LSM and 

MCS at the second floor of building with light damping 

B. Convergence Timing Considerations 

A stochastic analysis with a MC simulation of N runs can 

be computationally expensive especially for high an n-MDOF 

dynamic system. In the example presented here, this number 

was fixed at one thousand five hundred in the case of low 

correlation [10] while in the case of a strong correlation 

number is fixed at four thousand in accordance with the 

progressive results obtained for the estimate of the mean and 

its estimated variance as a function of the number of samples. 

Typical convergence of these estimates with increasing sample 

size is illustrated in Figs. 4 and 5, respectively. In other cases, 

however, the slow convergence of statistical processes may 

require even more iterations. The savings in computer time 

achieved with the linear model become quite evident. In the 

present study (with five random input variables), the linear 

statistical model is very efficient; the LSM method requires 

approximately the computational equivalent of five analysis 

runs. Note that the timing associated of the LSM model is due 

to the calculation of first-order sensitivity derivatives function. 

With the incremental iterative method used herein, the 

computational expense is dependent on the number of input 

variables and output functions. An approach for uncertainty 

propagation and robust design in computational fluid 

dynamics using sensitivity derivatives can be found in [11]. 

 

Fig. 4 Convergence of mean estimate with increasing sample size 

 

 

Fig. 5 Convergence of standard deviation estimate of mean with 

increasing sample size 

C. Probability Density Function Approximations 

Approximating a mean and standard deviation of the 

response output function X and assuming a normal 

distribution, one may then construct a PDF to approximate the 

behavior of X. Two independent MC simulations with a 

sample size of N=4000 were conducted. In both simulations, 

the average values of input parameters were set at 

],...,[ 51 cc=c =394,37 KN/m/s. In Simulation 1 

[ ]  ,cc 721955 51 =σc %,...,%= KN/m/s while in Simulation 2,

[ ] =σc 51 1010 cc %,...,%=   ,43739 KN/m/s. The results are 

plotted in Figs. 6 and 8 respectively. These approximations are 

compared to the PDF histograms generated from MC 

simulations. The bars depict the actual MC simulation 

histograms and the solid curves represent the normal 

distributions at the MC mean value and standard deviations. 

The MC simulation size of 4000 is not sufficient to obtain a 

smooth marginal PDF for the case described in Fig. 8. It is 

apparent however, that for small standard deviations of the 

damping (Fig. 6), the normal marginal PDF approximates the 

actual simulation in regions about the mean and the tails of the 

distribution. This is significant, for if one is primarily 

interested in reliable failure predictions, the prediction may be 

good enough, and the approximations of 4000 samples may 

suffice. This unfortunately is not the case for larger standard 

deviations of damping as clearly indicated in Fig. 8. In such a 

case, a simulation size of N=6000 would likely produce much 
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better approximations. It also should be noted that the results 

of MCS method can be utilized for the probabilistic 

description of response in terms of its second order statistics, 

as illustrated respectively in Fig. 7 for the approximate PDFs 

of the damping coefficients and in Fig. 9 for the maximum 

dynamic response. It is also noted that the despite the small 

effect of damping correlation on the marginal PDF of 

damping, significant differences are observed in the 

corresponding marginal PDF of the response. 

 

 

Fig. 6 Histogram and marginal PDF ( 2c = 394,37 KN/m/s, 

Covc=0,05 and ρc i,j =0) of peak response at 2nd floor 

 

 

 Fig. 7 Marginal PDF of damping (assumed c =394,3 KN/m/s, 

Covc=0.2) for two values of correlation coefficients  

 

 Fig. 8 Histogram and marginal PDF ( 2c = 394,37 KN/m/s, 

Covc=0,1 and ρc i,j =0) of peak response at 2nd floor 

 

 

Fig. 9 Marginal PDF response at 2nd floor for the values of 

correlation coefficients (computed CovX2=0.2 for ρc i,j =1 and 

CovX2=0.1 for ρc i,j=0) 

 

V. SUMMARY AND CONCLUSIONS 

This paper investigated the significance of damping 

variability on the dynamic response of typical building 

structures with statistically correlated damping in the 

neighborhood of a resonant frequency for various degrees of 

damping correlation coefficient. 

The present results represent an implementation of linear 

statistical model with correlated parameters for uncertainty 

propagation to predict second order statistics of peak response 

for structural dynamics problems. Efficient calculation of 

sensitivity derivatives was employed and the validity of the 

model was assessed by comparison with statistical moments 

generated through independent MC simulations for different 

degrees of correlation. Excellent agreement has been obtained 

for damping uncertainties ranging up to Cov of damping 

values less than or equal 40% and approximately 20% in the 

two extreme cases of uncorrelated and perfectly correlated 

damping coefficient respectively. Collectively, these results 

demonstrate the possibility for an effective approach to treat 

input parameters uncertainty and its propagation through 

structural dynamic analysis without large numbers of samples. 

Furthermore, the numerical results show the importance of 

damping uncertainty and statistical correlation of damping 

coefficients for accurate estimates of dynamic response under 

resonant conditions.  
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