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Forecasting for Financial Stock Returns Using a
Quantile Function Model

Yuzhi Cai

Abstract—In this talk, we introduce a newly developed quantile
function model that can be used for estimating conditional
distributions of financial returns and for obtaining multi-step ahead
out-of-sample predictive distributions of financial returns. Since we
forecast the whole conditional distributions, any predictive quantity
of interest about the future financial returns can be obtained simply
as a by-product of the method. We also show an application of the
model to the daily closing prices of Dow Jones Industrial Average
(DJIA) series over the period from 2 January 2004 - 8 October 2010.
We obtained the predictive distributions up to 15 days ahead for
the DJIA returns, which were further compared with the actually
observed returns and those predicted from an AR-GARCH model.
The results show that the new model can capture the main features
of financial returns and provide a better fitted model together with
improved mean forecasts compared with conventional methods. We
hope this talk will help audience to see that this new model has the
potential to be very useful in practice.

Keywords—DJIA, Financial returns, predictive distribution,
quantile function model.

I. INTRODUCTION

QUANTILE regression method has been used widely in
many areas [1]. This approach estimates a sequence of

quantiles of a response variable, leading to a discrete version
of the distribution of the response variable. Another quantile
approach to statistical modelling is to estimate the whole
conditional quantile function of a response variable, see for
example, [2] and [3]-[7]. In this talk we will explain how a
quantile function model [8] could be used to make predictions
for financial returns.

A general quantile function model may be defined by

QY (τ | ξ,x) = h1(η1, x1, . . . , xp)

+h2(η2, x1, . . . , xp)Q(τ, γ),

where ξ = (η1, η2, γ) is the model parameter vector, hi (i =
1, 2) are known functions of x and ηi, h2(η2, x1, . . . , xp) > 0,
Q(τ, γ) is the quantile function of the error term with explicit
mathematical expression, and τ ∈ (0, 1) is the probability that
Y takes values that are less than QY (τ | ξ,x).

The specific model we will use is given by

Qyt(τ | β,yt−1) = a0 + a1yt−1 + · · ·+ ak1yt−k1

+
√

b0 + b1y2t−1 + · · ·+ bk2y
2
t−k2

Q(τ, γ),

where

Q(τ, γ) =
τγ1 − 1

γ1
− (1− τ)γ2 − 1

γ2
.
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So, this model says that not only the location of the distribution
of yt depends on the past values of the series but also the scale
of the distribution of yt also depends on the past values of the
series.

It is noticed that once the model has been estimated we can
use the fitted model for forecasting. So before applying the
model to the Dow Jones Industrial Average (DJIA) series, we
first briefly describe the forecasting method. For more details
please see [8].

II. THE FORECASTING METHOD

Suppose we have estimated the model by using the MCMC
method developed in [8]. The posterior samples of the model
parameters collected from the MCMC method are denoted by
β(u) for u = 1, . . . , U . Suppose the length of the observed
series is n, we want to forecast the distribution of yn+m, where
m = 1, 2, . . .. The forecasting method is a simulation based
method and makes a full use of the posterior samples.

Specifically, for 1-step ahead forecasting, i.e. m = 1, we
have

f(yn+1 | yn)

=
∫
β
f(yn+1 | β,yn)π(β | yn)dβ

≈ 1
U

∑U
u=1 f(yn+1 | β(u),yn).

This defines a density function of f(yn+1 | yn). So we can
obtain a random sample of size I from f(yn+1 | β(u),yn),
denoted by y

(u,i1)
n+1 , i1 = 1, . . . , I , which will be used for the

2-step ahead predictive density function. The sample mean or
median may be used as a point forecast.

For 2-step ahead forecasting, we have

f(yn+2 | yn)

=
∫
yn+1

∫
β
f(yn+2 | β, yn+1,yn)

×f(yn+1 | β,yn)π(β | yn)dβdyn+1

≈ 1
U

∑U
u=1

1
I

∑I
i1=1 f(yn+2 | β(u), y

(u,i1)
n+1 ,yn).

So we can also obtain a random sample of size I from
f(yn+2 | β(u), y

(u,i1)
n+1 ,yn), which will be used for the 3-step

ahead predictive density function. The sample mean or sample
median may be used as a 2-step ahead point forecast.

By repeating this procedure we have a random sample from
each step ahead distribution, these samples allow us to estimate
any predictive quantity of interest.
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Fig. 1 (a) Time series plot of the DJIA between 2/1/2004-8/10/2010. (b)
Time series plot of the DJIA returns

III. APPLICATION

We consider Daily Dow Jones Industrial Average (DJIA) in
the period 2 January 2004 - 8 October 2010 and we consider
its log returns. Figs. 1 (a) and (b) show the time series plots
of the DJIA and its log-returns respectively. It is clear that the
figure shows some common features of a financial time series.

We fitted four quantile function models with k1 = 0, 1 and
k2 = 0, 1 to the DJIA returns and we found that the best fitted
model has k1 = k2 = 1.

The fitted model is

Qxt
(τ | β̂,xt−1) = 0.0623− 0.077xt−1

+
√

0.113 + 0.042x2
t−1

(
τ−0.301−1
−0.301 − (1−τ)−0.209−1

−0.209

)
.

so the standardized residuals is given by

rt =
xt − (0.0623− 0.077xt−1)√

0.113 + 0.042x2
t−1

.

A good fitted model is suggested if the distribution of rt
approximately follows the distribution defined by

Q̂(τ, γ̂) =
τ−0.301 − 1

−0.301
− (1− τ)−0.209 − 1

−0.209
,

which may be check by using a QQ-plot between rt and
Q̂(τ, γ̂). Fig. 2 shows the QQ-plots of the four model with
different orders. It confirms that the model with k1 = 1 and
k2 = 1 is the best.

For comparison purpose, we also fitted a sequence of
ARMA-GARCH models to the same data. Figure 3 shows the
QQ-plots of all the fitted models with different orders. It seems
that they all behave very similarly, but the AIC values suggest
that the estimated AR(1)-GARCH(1,1) with t-innovations is a
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Fig. 2 (a) Time series plot of the DJIA between 2/1/2004-8/10/2010. (b)
Time series plot of the DJIA returns
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Fig. 3 (a) Time series plot of the DJIA between 2/1/2004-8/10/2010. (b)
Time series plot of the DJIA returns

Fitted 1−step density forecasts

D
ec 2008

M
ar 2009

M
ay 2009

−10.00 −1.50 7.00

DJI returns

D
ec 2008

M
ar 2009

M
ay 2009

−4 −2 0 2 4 6

Fig. 4 (a) Time series plot of the DJIA between 2/1/2004-8/10/2010. (b)
Time series plot of the DJIA returns

better one. So we consider the estimated AR-GARCH model
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TABLE I
OUT-OF-SAMPLE POINT FORECASTS FOR THE LOG RETURNS OF THE DJIA

Steps Observed Predicted 2.5% 97.5% Predicted Lower Upper
(Q-AR ) quantile quantile (AR-GARCH) CI CI

1 0.035 -0.034 -0.465 0.366 0.005 -1.646 1.656
2 0.091 -0.008 -0.514 0.451 0.034 -1.622 1.691
3 0.684 -0.004 -0.466 0.443 0.033 -1.630 1.695
4 0.008 -0.007 -0.543 0.457 0.033 -1.635 1.701
5 -0.308 -0.013 -0.562 0.470 0.033 -1.641 1.707
6 0.729 0.007 -0.516 0.520 0.033 -1.647 1.712
7 -1.492 -0.014 -0.507 0.483 0.033 -1.653 1.718
8 1.171 -0.002 -0.451 0.481 0.033 -1.658 1.724
9 0.347 0.004 -0.517 0.504 0.033 -1.664 1.729
10 -0.126 -0.018 -0.510 0.452 0.033 -1.669 1.735
11 0.282 0.023 -0.463 0.511 0.033 -1.675 1.740
12 0.048 -0.010 -0.494 0.440 0.033 -1.680 1.746
13 -0.387 -0.001 -0.514 0.473 0.033 -1.686 1.751
14 -0.111 0.004 -0.501 0.478 0.033 -1.691 1.756
15 0.040 -0.002 -0.4898 0.419 0.033 -1.696 1.762

MSE 0.3346521 0.3357334
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Fig. 5 (a) Time series plot of the DJIA between 2/1/2004-8/10/2010. (b)
Time series plot of the DJIA returns

with t-innovations given below.

yt = 0.0327− 0.0557yt−1 +
√
htεt ,

(0.0184) (0.0242)
(1)

where

ht = 0.0085 + 0.0808v2t−1 + 0.9143ht−1,
(0.0036) (0.0133) (0.0133)

where
vt = yt − 0.0327 + 0.0557yt−1

and εt follows the t-distribution with 7.2150(1.3335) degrees
of freedom, and the numbers in brackets are the standard errors
of the estimated parameter values.

Fig. 4 shows the one-step ahead predictive density functions
during the period from 23 December 2008 to 19 May 2009.

The differences between the predictive density functions
indicate the effects of the differences in information sets.

Larger absolute returns implies a higher level of uncertainty
leading to a very flat predictive distribution of the returns on
the next day.

Fig. 5 shows out-of-sample predictive probability
distributions up to 15 steps ahead. where continuous
vertical lines represent the actually observed returns on these
days, the dashed vertical lines give a 95% probability interval
of the estimated distributions, and the dotted vertical lines
give a 95% confidence interval of the distribution obtained
from the estimated AR-GARCH model. It is seen that the
95% confidence intervals of the distribution obtained from
the estimated AR-GARCH model are much wider than
those obtained from the quantile function model, which may
suggest some uncertainties that are involved in the estimation
of the AR-GARCH model. It is also seen that these predictive
distributions also enable us to study any multi-step ahead
predictive quantity about the DJIA returns.

For example, Table I shows the out-of-sample point
forecasts for the log returns of the DJIA. The MSE values
show that our model has a slightly better performance than
the other model.

IV. CONCLUSIONS

We showed how to use a quantile function model to analyze
financial returns. We found that this model can provide an
improved fit, which suggests that this new model can capture
the main features of most financial return series including
extreme returns, skewness and volatility clustering.

Our results show that the predictive distributions of the
DJIA returns depend on the past information, they are skewed
and they have thicker tails compared with those obtained from
other models.

Although the observed returns covers the 2008 economic
crisis period, our model dealt with this situation well. All these
show that the quantile function model has the potential to be
very useful for financial time series in practice.

We have not compared the quantile function model with
other models including the important CAViaR model [9]. We
will carry out such comparisons in the future.
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