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Extreme Temperature Forecast in Mbonge,
Cameroon through Return Level Analysis of the
Generalized Extreme Value (GEV) Distribution

Abstract—In this paper, temperature extremes are forecast by
employing the block maxima method of the Generalized extreme
value(GEV) distribution to analyse temperature data from the
Cameroon Development corporation(C.D.C). By considering two sets
of data (Raw data and simulated data) and two (stationary and
non-stationary) models of the GEV distribution, return levels analysis
is carried out and it was found that in the stationary model, the
return values are constant over time with the raw data while in the
simulated data, the return values show an increasing trend but with
an upper bound. In the non-stationary model, the return levels of
both the raw data and simulated data show an increasing trend but
with an upper bound. This clearly shows that temperatures in the
tropics even-though show a sign of increasing in the future, there
is a maximum temperature at which there is no exceedence. The
results of this paper are very vital in Agricultural and Environmental
research.

Keywords—Return level, Generalized extreme value (GEV),
Meteorology, Forecasting.

I. INTRODUCTION

EXTREME value theory or analysis is a branch of statistics
dealing with extreme deviations from the median of

probability distribution [1].

A. Generalized Extreme Value Distributions

The generalized extreme-value (GEV) distribution,
introduced by Jenkinson [1955], has found many applications
in hydrology [2]. It was recommended for at-site flood
frequency analysis in the United Kingdom [2], for rainfall
frequency in the United States and for sea waves [2]. For
regional frequency analysis the GEV distribution has received
special attention since the introduction of the index-flood
procedure based on probability weighted moments (PWM)
[2]. Many studies in regional frequency have used the GEV
distribution [2]-[3]. In practice, it has been used to model a
wide variety of natural extremes, including floods, rainfall,
wind speeds, wave height, and other maxima. The physical
origin of these maxima suggests that their distributions may
be one of the extreme value (EV) types spanned by the GEV
distribution (EV types I, II, and III) [2]. Mathematically, the
GEV distribution is very attractive because its inverse has a
closed form, and parameters are easily estimated by moments
and L moments [3]. In probability theory and statistics,
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the generalized extreme value distribution is a family of
continuous probability distributions developed within extreme
value theory to combine the Gumbel, Frechet and Weibull
families also known as type I, II and III extreme value
distributions. It seeks to asses from a given ordered sample
the probability of evens that are more extreme than any
previously observed. Some applications of extreme value
theory include predicting the probability of distribution of;
Extreme floods, extreme winds, extreme rainfall, extreme
temperature, the amount of large insurance losses, pipeline
failures due to pitting corrosion [4]. In most countries this
theory is used determine the GDP of a country, national
income, birth rate, death rate, population growth rate etc.

B. Challenges from Global Climate Change

In the 21st century scientist have been faced with the
challenging problem of global climate change or global
warming. This global climate change has affected global air
temperature, oceanic temperature, rainfall, wind and quality
of incoming solar radiation. Global circulation model predicts
1.4 to 5.8oc rice in global temperature by the end of the
21st century because of the increase in the concentration of
green house gases. This increase in temperature has drastically
increase the rate of evaporation which has resulted to the
accumulation of clouds hence less radiant heat is being loss.
This has lead to an increase in night temperature than day
temperature. This increase in night temperature has a huge
effect on agricultural production worldwide. Long and short
term periods of heat stress are predicted to occur more
frequently as a result of global warming, affecting many
aspects of crop growth and development, reducing crop yield
and decreasing crop quality. This high temperature decreases
crop production by decreasing photosynthetic function, sugar
and starch content, increasing respiration rate, suppressing
floral bud development, causing male sterility and low pollen
viability and hastening crop maturity [5].

C. Geographical Location and Climatic Conditions of
Mbonge

Mbonge is a little town in Meme division, South West
region of Cameroon located on the leeward site of mount
Cameroon. This town like most other towns in Cameroon has
an equatorial climate with temperature range between 20oc to
35oc and very high level of precipitation. Some tropical crops
that can grow in this region are; cassava, beans, plantains,
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banana, cocoa, palm nuts, rubber, ground nuts ...etc. The
Little town of Mbonge is known to be one of the towns
where there is Cameroon’s Agro industrial company called
”Cameroon Development Corporation” (CDC). This company
produces crops like: rubber, oil palm, bananas, coconuts, tea
etc. These crops are mostly exported and also contributes
greatly to the countries GDP. So following the huge impact
of climatic change on crop growth and production, it is worth
while necessary to study the effect of extreme temperatures in
this area.

II. METHODOLOGY

Monthly temperature over Mbonge in Cameroon for the
period 1993 to 2012 was obtained from the Cameroon
Development Corporation (C.D.C). The dataset contains 240
values of monthly maximum temperature for the past 20 years.
Extreme value analysis was performed on this study by fitting
the generalised extreme value distribution to the sample of
different periods of extremes using method of maximum
likelihood estimates (MLE).

A. Generalized Extreme Value Family of Distribution

We consider the generalized extreme value distribution
having cumulative distribution function given by

F (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
exp

{
−
[
1 + ξ

(
x− μ

σ

)]−1/ξ
}

ξ �= 0

exp

(
−exp

[
−
(
x− μ

σ

)])
ξ = 0

(1)

Define for
{
x : 1 + ξ (x−μ)

σ > 0
}

, −∞ < μ < ∞, σ > 0,
and −∞ < ξ < ∞ where μ is the location parameter, ξ is the
shape parameter and σ is the scale parameter.The Location
parameter specifies the center of the GEV distribution. Scale
parameter, determines the size of deviations of μ. And Shape
parameter which shows how rapidly the upper tail decays.
Here positive ξ implies a heavy tail while negative ξ implies a
bounded tail, and the lim ξ → 0 implies an exponential tail [6].

There are three classes of the generalized extreme value
family of distribution. Their difference depends only on the
value of the the shape parameter ξ.

We have the Gumbel distribution with ξ = 0 with
cumulative probability distribution given by

F (x) = 1− exp(− exp(z)) (2)

where
z ≡ x− μ

σ

for Gumbel mean and

F (x) = exp(− exp(−z)) (3)

where
z ≡ x− μ

σ

for Gumbel max [7].

The Gumbel distribution is a particular case of the
generalized extreme value distribution (also known as the
Fisher Tippett distribution). It is also known as the log
Weibull distribution and the double exponential distribution
(a term that is alternatively sometimes used to refer to
the Laplace distribution). It is often incorrectly labelled
as Gompertz distribution. And it is used to model the
distribution of the maximum (or the minimum) of a
number of samples of various distributions it is also known to
be unbounded as it takes all values in the real number line [7].

For ξ < 0 we have the Weibull distribution with cumulative
probability distribution given by

F (x) = 1− exp

(
−
(x
σ

)ξ)
(4)

for two parameter Weibull and

F (x) = 1− exp

(
−
(
x− μ

σ

)−ξ
)

(5)

for three parameter Weibull [7].

The Weibull distribution is used in cases that deal with
the minimum rather than the maximum. The distribution here
has an addition parameter compared to the usual form of the
Weibull distribution and, in addition, is reversed so that the
distribution has an upper bound rather than a lower bound.
Importantly, in applications of the GEV, the upper bound is
unknown and so must be estimated while when applying the
Weibull distribution the lower bound is known to be zero.
For ξ > 0, we have the Freshet class of distribution with
cumulative probability distribution given by

F (x) = exp

(
−
(σ
x

)ξ)
(6)

for two parameter Freshet and

F (x) = exp

(
−
(

σ

x− μ

)ξ
)

(7)

for three parameter Freshet [7].
The Freshet cumulative distribution function (CDF) is the
only CDF defined on the non-negative real numbers that is a
well-defined limiting CDF for the maxima of random variables
(RVS). Thus, the Freshet CDF is well suited to characterize
RVS of large features. As such, it is important for modelling
the statistical behaviour of materials properties for a variety
of engineering applications [7].
Below are curves of the GEV family of Distributions
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Fig. 1. GEV Family of Dsitributions

B. Return Levels

A T-year return level say xT , is the value occurring on
average ones in every T-years. For our analysis, we have a 2
years return level, 20 years return level and 100 years return
level.
Extreme-value theory is often required to find return values
for return periods that amply exceed the record length. This
implies extrapolation of the GEV fit to a domain outside the
range of the observations. In our approach, the return value
determination involves little extrapolation, as series length and
return periods of interest T are about equal. This considerably
reduces the uncertainty in the estimate [8].
Solving for xT in the equation

F (xT ) = 1− 1

T
(8)

where

F (xT ) = exp
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−
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}
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For the case where ξ = 0, we have that

xT = μ− σ log

{
− log

(
1− 1

T

)}
(14)

By substituting μ̂, σ̂ and ξ̂ in the above equation, we obtain
the Maximum Likelihood estimate for return levels. From

our data, we have 20 years of monthly maximums with a
maximum temperature of 360c. Our main aim in this work is
to carry out za return level analysis for extreme temperature
forecast.

C. Model Selection

Fitting the data in to the GEV family of distribution, we
have the following results

Fig. 2. GEV distribution show a good fit

Fig. 3. Gumbel distribution shows no fit

Fig. 4. Freshet distribution shows no fit

From the above graphs we see that the GEV distribution
best fits our data than the Frechet and Weibull distribution.
Hence it is considered as the best model.



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:6, 2015

339

Fig. 5. Weibul distribution shows no fit

D. Selection Period

Generalized extreme value distribution uses block maxima
for statistical modelling. Here, the data is partitioned into
blocks of equal length, and fitting the GEV distribution to
the set of block maxima. The dataset provided has 20 years
of monthly maxima. So if one year block is used, then we
will only have 20 points which is not good for any statistical
modelling. Thus we consider and compare different selection
periods which are the; Monthly, Bi-monthly, Quarterly,
Half-yearly and yearly selection periods. Carrying out a test
statistics, we have the following data below.

Time Test C.V P.V S.L Reject
1Month K.S 0.08766 2.1413e-17 0.05 Yes

A.D 2.5018 N/A 0.05 Yes
2months K.S 0.12397 8.1179e-9 0.05 Yes

A.D 2.5018 N/A 0.05 Yes
4months K.S 0.1496 1.1662e-5 0.05 Yes

A.D 2.5018 N/A 0.05 Yes
6months K.S 0.21012 0.00278 0.05 Yes

A.D 2.5018 N/A 0.05 Yes
Yearly K.S 0.29408 0.05405 0.05 No

A.D 2.5018 N/A 0.05 Yes

Table I: GEV test statistics (where; S.L = significant level,
C.V= Critical value, P.V=P-value).

Table II: Descriptive Statistics

E. Parameter Estimation

Two common methods of estimating the GEV parameters
are the method of maximum likelihood and the method
of L-moments [3]. For small samples, Hosking found that
L-moment estimators produced biased estimates, but were
preferable to maximum likelihood estimators because they
resulted in estimated quantiles with smaller variances.
Also, the method of L-moments is usually computationally
more tractable than the method of maximum likelihood.
Research has also shown that the asymptotic standard
error of the L-moment estimator when compared with
those of maximum-likelihood estimators usually show
that the L-moment estimator is more efficient than the
Maximum-Likelihood method for parameter estimation. GEV
quantiles estimated is also another method of parameter
estimation from small samples using conventional method of
moments estimators were more accurate than those based on
either maximum likelihood or L-moments. Fitting the data
into the GEV distribution, we have the following parameter
estimate

Distribution ξ σ μ
GEV -1.1667 1.8967 33.688

Weibull(3P) 1.0412E+8 1.2863E+8 -1.2863E+8
Frechet(3P) 3.7853 9.9007 22.251

Gumbel(mean) 0 1.5375 34.442
Table III: Parameter estimate

III. RESULTS AND DISCUSSION

A. Results from Raw Data
Return Period (years) Return level (0c)

2 34.23257
20 35.29240

100 35.34213
Table IV: Return levels estimates for monthly data

B. Results from Simulated Data
Return Period (years) Return level (0c)

2 32.52296
20 36.20930

100 37.35988
Table V: Return level estimate of simulated data

From the above analysis, we see that the maximum value
of 360c can not be exceeded even in the next 100 years with
the raw data. This is supported by the return level graph that
gives a straight line at 35.342130c This was also supported
by the time series graph that gave an almost constant trend
over time.
This is not a good result for our situation following the
concept of global warming that is alarming nowadays. So to
solve this problem, we simulated the same data between the
ranged given by our raw data since temperature prediction is a
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Fig. 6. Graphs from raw data

Fig. 7. Graphs from simulated data

stochastic process and we had the following results displayed
in Fig: 7. Temperature values here show to be increasing but
with an upper bound.

To model the GEV distribution with trend, In this work,
we are only going to consider the case where the location
parameter μ is time dependent and the scale and shape
parameters are constants of time. The model is given by

Fig. 8. Time series of raw data

Fig. 9. Time series of simulated data

⎧⎪⎨
⎪⎩
μ(t) = γ0 + γ1t

σ(t) = σ

ξ(t) = ξ

(15)

The probability density function with trend in the location
parameter now becomes

F (x) = exp

{
−
[
1 + ξ

(
x− (γ0 + γ1t)

σ

)]−1/ξ
}

(16)

C. Parameter Estimate and Graphs

Now fitting our data to the GEV distribution with trend,
we have the following parameter estimate and the graphs are
given below

Parameters loc scale shape
Estimates 33.318 1.976 -0.733

Standard error 0.1301 0.1043 0.0245
Deviance: 876.9426

Optimization Information
Convergence : Successful
Function evaluation : 92
Gradient evaluation : 16

Table VI: Model Parameter Estimate from Raw Data
Parameters loc scale shape
Estimates 31.9807 2.4438 -0.4912

Standard error 0.19116 0.16714 0.08447
Deviance: 1059.655

Optimization Information
Convergence : Successful
Function evaluation : 37
Gradient evaluation : 13

Table VII: Model parameter estimate from simulated data

From Fig: 10 and Fig: 11, we see that modelling GEV
distribution taking in to consideration the existence of trend
in the location parameter, the return level graph of the raw
data and simulated data are similar with all of them having
an upper bound. This upper bound simply means that the
predicted future temperature values dough might increase,
there is a maximum value that this temperature values will
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Fig. 10. Graphs with trend from raw data
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Fig. 11. Graphs with trend from simulated data

not exceed even in the next 1000 years. This simply means
that if we consider the earth as a black body, it will absorb
cosmic rays from the sun and also emit radiations and there
will come a point where the amount of radiation absorbed
is equal to the radiation emitted. This will give a kind of
thermal equilibrium environment.

IV. CONCLUSION

We have been provided with 20 years of monthly maximum
temperature from the Cameroon Development Corporation
(C.D.C) Mbonge. Fitting this data into the Generalized
extreme value family of distributions, it was found that the

three parameter Generalized extreme value model best fit
our data as compared to the Weibull, Freshet and Gumbel
models. We went further to look for the best selection
periods that can be model with this generalized extreme value
distribution where it was found that the monthly, bi-monthly
and quarterly selection periods are the best selection periods
to be modelled with the GEV distribution. The time series
analysis of the maximum temperature data does not show
any strong evidence of trend hence we decided to simulate
the same data where the time series of the simulated data
does not still show a strong evidence that there exist trend
over time in the temperature values this made us to conclude
that temperature values in the tropics are fairly constant
and does not show any strong evidence of increasing in the
future. While the return level analysis of our raw data does
not give us any good evidence that temperature values will
exceed the maximum at 2, 20, and 100 years return periods,
the return level analysis of our simulated data clearly show
that the temperatures show an increasing trend over time
and will exceed the maximum in 20 and 100 years return
periods. From this return level analysis, we realize that even
though temperature values in the tropics might show signs
of increasing in the future, there is an upper bound where
temperature values will not exceed even in the next 1000 years.

In the future, we will expect to have temperature data
together with data from the yield or growth of these crops
from C.D.C Mbonge for proper analysis.
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