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Abstract—The system of ordinary nonlinear differential 

equations describing sliding velocity during impact with friction for a 
three-dimensional rigid-multibody system is developed. No analytical 
solutions have been obtained before for this highly nonlinear system. 
Hence, a power series solution is proposed. Since the validity of this 
solution is limited to its convergence zone, a suitable time step is 
chosen and at the end of it a new series solution is constructed. For a 
case study, the trajectory of the sliding velocity using the proposed 
method is built using 6 time steps, which coincides with a Runge-
Kutta solution using 38 time steps. 
 

Keywords—Impact with friction, nonlinear ordinary differential 
equations, power series solutions, rough collision. 

I. INTRODUCTION 

N practice, many systems are subjected to impacts during 
their functional operations and in most cases friction cannot 

be ignored. These systems have to be modeled as rigid-
multibody systems with impact and friction. Examples include 
part-feeding systems, cooperative manipulators, and automatic 
assembly of mechanical components. Typically, impact is 
modeled as sudden event with finite change in velocities and 
no change in configurations of the system. During the small 
finite impact period, many scenarios for the sliding velocity 
could take place. To capture these scenarios and correctly 
model the impact phenomenon, the equations of motion can be 
written with normal component of impulse as time-like 
variable. This analysis results in highly nonlinear system of 
ordinary differential equation. Numerical solutions are 
available to this system in literature [1]-[5]. However for the 
best of authors' knowledge, no analytical solution for this 
system has been developed yet. 

There are different methods used to solve the nonlinearity 
problem in system of nonlinear differential equations. 
Linearization is one method, however, as [6] mentioned, many 
differential equations cannot be linearized or linearized 
equations no longer represent the model accurately. To 
evaluate a specific analytical method: (a) it constantly has to 
produce approximate solutions efficiently and (b) its solutions 
are acceptable in the whole region of all physical parameters. 
Perturbation methods are widely used and well understood 
[7]-[9]; however, they depend upon the existence of a small 
parameter which is not always available in practical cases. 
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Even with the existence of such parameter, in many cases, no 
solution could be found. Though the homotopy analysis 
method (HAM) does not need a small parameter [10]-[12], an 
initial guess is required which limits the applicability of the 
method and open the door for serious uncertainties that it can 
constantly give a solution. Nowadays, there is a need for more 
satisfactory methods to comply with the two previously 
mentioned standards. Power series solution, which in fact is a 
Taylor series solution, is a promising method. For a long time, 
the method has been used for linear problems. Zhou [13] 
developed the differential transform method and used it in 
solving linear and nonlinear initial value problems in electric 
circuit analysis. The method is an iterative procedure for 
obtaining power series solution of linear and nonlinear 
ordinary or partial differential equations [14]. For a system of 
ordinary differential equations, [15] developed a method that 
utilizes auxiliary variables to expand the system to larger 
system that can be solved using power series. Most nonlinear 
differential equations can be solved using Parker-Sochacki 
method at the cost of also calculating the coefficients of 
auxiliary equations [16], [17]. Hence, for a broad range, the 
method satisfy standard (a). However, the method is 
ineffective in satisfying standard (b). The power series 
solution is valid only in the interval of convergence; hence, 
outside the interval of convergence it is not valid. Some 
researches tried to develop techniques to extend the 
convergence interval for the power series solutions. Common 
techniques are Pade approximation and Laplace-Pade 
approximation [18]. 

In this paper, the system of nonlinear differential equations 
that describe the evolution of the sliding velocity during 
impact period is considered. Power series solution for the 
system is built. The procedure neither uses the differential 
transform method nor uses Parker-Sochacki method to obtain 
the solution. Hence, no transformed functions or auxiliary 
variables are introduced. The commercial program 
Mathematica 9 is used for directly obtaining the coefficients of 
the power series solutions. Therefore, the cost of calculating 
the coefficients of auxiliary equations is saved. To overcome 
the divergence problem, a time step is chosen, within the 
convergence zone, and the series is evaluated at that time. The 
process is repeated up to the end of the required time domain. 

II. SLIDING VELOCITY 

The inertia operator ۲ ∈ ܴଷ୶ଷ for three-dimensional 
multibody system depends only upon system configuration 
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and is a symmetric positive definite matrix which can be 
written as [3]:  

 
 ۲ ൌ ൤ܽ					ࢎ

்

			ࢎ ࢈
൨ (1) 

 

where	ܽ ∈ ܴଵ୶ଵ,  ࢎ ൌ ൜
݄ଵ
݄ଶ
ൠ ∈ ܴଶ୶ଵ, and ࢈ ൌ ൤

ܾଵ					ܾଶ
ܾଷ					ܾସ

൨ 	 ∈ ܴଶൈଶ. For 

a single point rough collision in three-dimensional rigid-
multibody systems subjected to impact with friction; the 
vector of the evolution of the sliding velocity is given by [3]:  
 

ܜܞ݀ 
௡݌݀

ൌ ܐ െ  (2) ࣌܊ߤ

 
where ܜܞ is the tangential component of the velocity of the 
colliding point, ܜܞ є ܴଶ୶ଵ (m/s), ݌௡ is the normal component of 
impulse at collision point (N.s), μ is the coefficient of friction, 
and 	σ   is the unit vector defining the sliding direction;  
 

࣌  ൌ
࢚ܞ
‖ܜܞ‖

 (3) 

 
Equation (2) is a highly nonlinear system of ordinary 

differential equation which shows that the vector of the 
evolution of the sliding velocity has a direction that does not 
coincide, in general, with the direction of the tangential 
velocity ܜܞ itself. This means that the tangential velocity could 
continuously change its direction during the collision interval. 
Consequently, ࣌ is not a constant coefficient, The scalar ݌௡has 
been selected as a collision parameter, since it is a variable  
starts with zero at the starting of impact and continuously 
increases through the collision period until the end of impact. 
Therefore, it is selected as time-like quantity; in terms of it the 
progress of impact is expressed. The time has not been chosen 
because the force-time relation is not known prior to the 
analysis. 

Equation (2) can be written in scalar form instead of vector 
form as: 

 
௧ଵݒ݀
௡݌݀

ൌ ݄ଵ െ ሺߤ
ܾଵݒ௧ଵ

ඥሺݒ௧ଵሻଶ ൅ ሺݒ௧ଶሻଶ
൅

ܾଶݒ௧ଶ
ඥሺݒ௧ଵሻଶ ൅ ሺݒ௧ଶሻଶ

ሻ (4) 

 
௧ଶݒ݀
௡݌݀

ൌ ݄ଶ െ ሺߤ
ܾଷݒ௧ଵ

ඥሺݒ௧ଵሻଶ ൅ ሺݒ௧ଶሻଶ
൅

ܾସݒ௧ଶ
ඥሺݒ௧ଵሻଶ ൅ ሺݒ௧ଶሻଶ

ሻ (5) 

 
where ݒ௧ଵand ݒ௧ଶ are the two perpendicular components of the 
tangential velocity ܜܞ.  

III. POWER SERIES SOLUTION 

The method of power series is used to get an approximate 
solution. The series solution can be written as Taylor 
expansion:   

 
௧ଵݒ ൌ ∑ ܽ௠ ሺ݌௡ሻ௠

ஶ
௠ୀ଴   (6) 

௧ଶݒ ൌ ∑ ݀௠ ሺ݌௡ሻ௠ஶ
௠ୀ଴   (7) 

 
 Substitution in (4) and (5) gives: 

෍ ݉ܽ௠	ሺ݌௡ሻ௠ିଵ

ஶ

௠ୀ଴

ൌ ݄ଵ െ ሺߤ
ܾଵ ∑ ܽ௠	ሺ݌௡ሻ௠

ஶ
௠ୀ଴

ඥሺ∑ ܽ௠	ሺ݌௡ሻ௠ஶ
௠ୀ଴ ሻଶ ൅ ሺ∑ ݀௠	ሺ݌௡ሻ௠ஶ

௠ୀ଴ ሻଶ
		

൅
ܾଶ ∑ ݀௠ ሺ݌௡ሻ௠

ஶ
௠ୀ଴

ඥሺ∑ ܽ௠ ሺ݌௡ሻ௠ஶ
௠ୀ଴ ሻଶ ൅ ሺ∑ ݀௠	ሺ݌௡ሻ௠ஶ

௠ୀ଴ ሻଶ
ሻ 

(8) 

 
and 

෍ ݉݀௠	ሺ݌௡ሻ௠ିଵ

ஶ

௠ୀ଴

ൌ ݄ଶ െ ሺߤ
ܾଷ ∑ ܽ௠	ሺ݌௡ሻ௠

ஶ
௠ୀ଴

ඥሺ∑ ܽ௠	ሺ݌௡ሻ௠ஶ
௠ୀ଴ ሻଶ ൅ ሺ∑ ݀௠	ሺ݌௡ሻ௠ஶ

௠ୀ଴ ሻଶ

൅
ܾସ ∑ ݀௠ ሺ ௡ܲሻ௠

ஶ
௠ୀ଴

ඥሺ∑ ܽ௠ ሺ݌௡ሻ௠ஶ
௠ୀ଴ ሻଶ ൅ ሺ∑ ݀௠	ሺ݌௡ሻ௠ஶ

௠ୀ଴ ሻଶ
ሻ					  

(9) 

 
a0 and d0 are the initial conditions of ݒ௧ଵ and ݒ௧ଶ respectively. 
Equating the coefficients of the same power of ݌௡ in both 
sides of (8) and (9) specifies the required coefficients of the 
power series solution. The commercial mathematical program 
‘Mathematica 9’ is used for performing this task and the 
coefficients are: 

 
ܽଵ ൌ ሺ݄ଵ െ ܵሻ ݀ଵ ൌ ሺ݄ଵ െ ܸሻ  
ܽଶ ൌ െ0.5 ଶ݀ ܭ ൌ െ0.5	ܴ  

ܽଷ ൌ െ
ߤ

6ሺܽ଴ଶ ൅ ݀଴
ଶሻହ/ଶ

ൣ2ܽ଴ଶܾଶ݀଴ܽଵଶ െ 3ܽ଴ܾଵ݀଴
ଶܽଵଶ

െ ܾଶ݀଴
ଷሺ݄ଵ െ ܵሻଶ

െ 2ܽ଴ଷܾଶሺ݄ଵ െ ܵሻሺ݄ଶ െ ܸሻ
൅ 4ܽ଴ଶܾଵ݀଴ሺ݄ଵ െ ܵሻሺ݄ଶ െ ܸሻ
൅ 4ܽ଴ܾଶ݀଴

ଶሺ݄ଵ െ ܵሻሺ݄ଶ െ ܸሻ
െ 2ܾଵ݀଴

ଷሺ݄ଵ െ ܵሻሺ݄ଶ െ ܸሻ
െ ܽ଴ଷܾଵሺ݄ଶ െ ܸሻଶ െ 3ܽ଴ଶܾଶ݀଴ሺ݄ଶ െ ܸሻଶ

൅ 2ܽ଴ܾଵ݀଴
ଶሺ݄ଶ െ ܸሻଶ ൅ ܽ଴ଷܾଶ݀଴ܭ

െ ܽ଴ଶܾଵ݀଴
ଶܭ ൅ ܽ଴ܾଶ݀଴

ଷܭ െ ܾଵ݀଴
ସܭ

െ ܽ଴ସܾଶܴ ൅ ܽ଴ଷܾଵ݀଴ܴ െ ܽ଴ଶܾଶ݀଴
ଶܴ

൅ ܽ଴ܾଵ݀଴
ଷܴ൧ 

 

݀ଷ ൌ െ
ߤ

6ሺܽ଴ଶ ൅ ݀଴
ଶሻହ/ଶ

ሾ2ܽ଴ଶܾସ݀଴ሺ݄ଵ െ ܵሻଶ

െ 3ܽ଴ܾଷ݀଴
ଶሺ݄ଵ െ ܵሻଶ

െ ܾସ݀଴
ଷሺ݄ଵ െ ܵሻଶ

െ 2ܽ଴ଷܾସሺ݄ଵ െ ܵሻሺ݄ଶ െ ܸሻ
൅ 4ܽ଴ଶܾଷ݀଴ሺ݄ଵ െ ܵሻሺ݄ଶ െ ܸሻ
൅ 4ܽ଴ܾସ݀଴

ଶሺ݄ଵ െ ܵሻሺ݄ଶ െ ܸሻ
െ 2ܾଷ݀଴

ଷሺ݄ଵ െ ܵሻሺ݄ଶ െ ܸሻ
െ ܽ଴ଷܾଷሺ݄ଶ െ ܸሻଶ

െ 3ܽ଴ଶܾସ݀଴ሺ݄ଶ െ ܸሻଶ

൅ 2ܽ଴ܾଷ݀଴
ଶሺ݄ଶ െ ܸሻଶ ൅ ܽ଴ଷܾସ݀଴ܭ

െ ܽ଴ଶܾଷ݀଴
ଶܭ ൅ ܽ଴ܾସ݀଴

ଷܭ െ ܾଷ݀଴
ସܭ

െ ܽ଴ସܾସܴ ൅ ܽ଴ଷܾଷ݀଴ܴ െ ܽ଴ଶܾସ݀଴
ଶܴ

൅ ܽ଴ܾଷ݀଴
ଷܴሿ 

(10) 

 
where 

ܭ ൌ ߤ
െܽ଴ܾଶ݀଴ܽଵ ൅ ܾଵ݀଴

ଶܽଵ ൅ ሺ݄ଶ െ ܵሻሺܽ଴ଶܾଶ െ ܽ଴ܾଵ݀଴ሻ

ሺܽ଴ଶ ൅ ݀଴
ଶሻଷ/ଶ

 

ܵ ൌ
ܽ଴ܾଵ ൅ ܾଶ݀଴

ටܽ଴ଶ ൅ ݀଴
ଶ
 ߤ

, 
ܸ ൌ

ܽ଴ܾଷ ൅ ܾସ݀଴

ටܽ଴ଶ ൅ ݀଴
ଶ
 ߤ	

, and 
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ܴ ൌ ߤ	
െܽ଴ܾସ݀଴݀ଵ ൅ ܾଷ݀଴

ଶ݀ଵ ൅ ሺ݄ଶ െ ܵሻሺܽ଴ଶܾସ െ ܽ଴ܾଷ݀଴ሻ

ሺܽ଴ଶ ൅ ݀଴
ଶሻଷ/ଶ

 
(11) 

 
It can be noticed that all the power series coefficients given 

in (10) and (11) depends entirely upon the coefficient of 
friction	ߤ, initial conditions ܽ଴ and ݀଴, and upon the 
components of inertia operator	۲. Equations (6) and (7) are 
the general power series solution for the sliding velocity in a 
single point rough collision in three-dimensional rigid-
multibody systems with impact and friction. Equations (10) 
and (11) specify the coefficients in (6) and (7) up to the forth 
term. Though more coefficients have been obtained with same 
technique they are not presented here because of their 
extraordinary dimension. 

IV. CASE STUDY 

A case study of four degrees of freedom spatial rigid-robot 
that collides with a rough surface is considered. Details of that 
system are available in [4] and [5]. For that system, the inertia 
operator is:   

 

 ۲ ൌ 10ିଷ 	൥
9.009 െ0.342 1.845
െ0.342 9.307 2.26
1.845 2.26 3.922

൩ 

 
Hence, the mass parameters in (1) are specified. For the 

case when μ=0.3, this coefficient of friction as well as the 
mass parameters are substituted in (10) and (11) to calculate 
the coefficients of the power series solutions for ࢚࢜૚	and	࢚࢜૛, 
which are given in (6) and (7). Figs. 1-3 show the relation 
between the two components of the tangential velocity, 
 ૛, for three different initial conditions. Both the࢚࢜	and	૚࢚࢜
numerical solution and the power series solution are shown in 
each figure. The convergence interval of the power series 
solution is the zone where that solution coincides with the 
numerical solution. Outside that interval, the power series 
solution diverges from the numerical solution. 

V.   IMPROVING THE SOLUTION’S CONVERGENCE 

Since the power series solution suffers from the problem of 
divergence of the solution, one could not get a valid solution 
for the entire solution domain in a single step. To obtain the 
required valid solution, a variable time step technique is 
developed. The first time step is chosen within the 
convergence zone of the power series solution and the solution 
variables are specified at the end of this time step. A new 
power series solution is generated started from these specified 
variables and a new time step is chosen within the 
convergence zone of this solution. This sequence is repeated 
up to the end of the required time domain. This technique is 
applied to the first case, previously presented in Fig. 1. The 
trajectory is obtained using 6 time steps (Fig. 4) compared to 
38 time steps for the numerical solution using fourth order 
Runge-Kutta scheme.  

For each time step, the interval of the normal impulse ௡ܲ 
and the corresponding first seven coefficients of the power 
series solution for ݒ௧ଵand ݒ௧ଶ are shown in Tables I and II, 

respectively.   
 

 

Fig. 1 Solutions for initial condition (4,0) 
 

 

Fig. 2 Solutions for initial condition (1,-4) 
 

 

Fig. 3 Solutions for initial condition (-4,-4) 
 

 

Fig. 4 Power series solution with six time steps 
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TABLE I 
INTERVALS OF THE PERIODS AND THE FIRST SEVEN COEFFICIENTS OF THE SERIES SOLUTION FOR ݒ௧ଵ 

Interval of the normal impulse 
Coefficients 

a0 a1 a2 * 10-7 a3 * 10-10 a4 * 10-12 a5 * 10-15 a6 * 10-19 

0-784 4 -0.031342 -0.9890 -0.02356 0.0167142 0.0193681 0.172456 

784-1265 1.508 -0.003140 3.95027 9.98373 1.3537 1.07456 -4.0277 

1265-1665 0.2662 -0.001684 20.680 -10.518 -2.425 5.362 9.58313 

1665-2000 -0.151 -0.0007 6.5021 -7.27 0.64458 -0.3821 -0.4710 

2000-2450 -0.335 -0.00043 2.1896 -2.15645 0.18583 -0.14323 0.97602 

2450-3000 -0.581 -0.00293 0.3914 -0.2757 0.017297 -0.100297 0.054838 

 
TABLE II 

INTERVALS OF THE PERIODS AND THE FIRST SEVEN COEFFICIENTS OF THE SERIES SOLUTION FOR ݒ௧ଶ 

Interval of the normal impulse 
Coefficients 

d0 d1 d2 * 10-7 d3 * 10-11 d4 * 10-13 d5 * 10-17 d6 * 10-19 

0-784 0 0.001167 -1.71637 -6.32099 -0.27437 -1.1786 -0.042394 

784-1265 0.7603 0.007 -4.518 -7.9562 3.44164 75.699 8.3878 

1265-1665 1.051 0.00053 2.9989 0.339004 -12.3161 61.524 34.380 

1665-2000 1.332 0.00075 1.8392 -17.1417 0.94314 3.8904 -1.9906 

2000-2450 1.589 0.00083 0.69099 -6.42435 0.501825 -3.23826 0.148375 

2450-3000 2.229 0.00087 0.1298 -0.902564 0.05544 -0.31163 -1.9906 

 
VI. CONCLUSION 

Power series method has been used in this paper to 
construct the solution for the nonlinear system of differential 
equations for sliding velocity during impact with friction on 3-
dimensional rigid-multibody systems. The power series 
method does not need a small parameter like the perturbation 
method. The power series method does not need an initial 
solution guess like the homotopy analysis method and the 
homotopy perturbation method. However, power series 
solution suffers from the problem of limited convergence 
interval. Hence, one could not get a valid solution for the 
entire solution domain in one shot. For a specific initial 
condition and coefficient of friction, the numerical solution is 
considered the reference solution and the power series solution 
is compared to it. Whenever the power series solution 
deviated, from the numerical solution, this analytical solution 
stops and the values of the variables are marked. 
Consequently, a new power series solution is generated started 
from these marked conditions. For the specific case 
considered, the orbit of the sliding velocity has been obtained 
with 6 time steps compared to 38 time steps to draw the same 
orbit for the numerical solution using fourth order Runge-
Kutta scheme. 

 Future work is to explore methods that can increase the 
convergence zone of the series solution. Power series 
resummation methods are expected to improve the 
convergence. Many engineering problems are not solved 
before using power series; hence, constructing power series 
solutions to these problems are worth to investigate. 
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