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Fatima Akhmedova, Simon Liao

Abstract—One of the most critical decision points in the design of a
face recognition system is the choice of an appropriate face representation.
Effective feature descriptors are expected to convey sufficient, invariant
and non-redundant facial information. In this work we propose a set of
Hahn moments as a new approach for feature description. Hahn moments
have been widely used in image analysis due to their invariance, non-
redundancy and the ability to extract features either globally and locally.
To assess the applicability of Hahn moments to Face Recognition we
conduct two experiments on the Olivetti Research Laboratory (ORL)
database and University of Notre-Dame (UND) X1 biometric collection.
Fusion of the global features along with the features from local facial
regions are used as an input for the conventional k-NN classifier. The
method reaches an accuracy of 93% of correctly recognized subjects for
the ORL database and 94% for the UND database.

Keywords—Face Recognition, Hahn moments, Recognition-by-parts,
Time-lapse

I. INTRODUCTION

IF we try to imagine how different our life would be without
the ability to memorize and recognize human faces, we will

realize the exceptional importance of automatic face recognition
for the progress of Artificial Intelligence. Since 1964 when the
first attempt of semi-automatic facial recognition was made [1], a
lot of effort has been put into achieving human-level performance.
However, the recognition function, which is natural and trivial for
the human brain, is much more difficult for machines. Computers
perform well with static, controlled “mug-shot” identification,
but when it comes to an uncontrolled one, the efficiency drops
significantly due to the multiple variations presented in different
images of the same person. Various poses, expressions, and
lighting conditions greatly affect the biometric signature of a
subject. To address this problem researchers withdrew the idea of
using absolute geometric distances between facial parts as feature
descriptors and began to look for more complex, yet more invariant
attributes.

In 1990, Kirby and Sirovich [2] proposed the eigenfaces as
a new, more robust technique. The algorithm is based on the
use of basic statistical characteristics. An N × N image is
represented as a sum of weighted eigenvectors, linearising the
two-dimensional image into a vector of size N2. Then, Principal
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Component Analysis (PCA) [3] is employed in order to reduce
the dimensionality of the final feature set. PCA optimizes the
existent high-dimensional space in the sense that the remaining
data possess the most generalized information about the original
images. As the dimensionality reduction is performed only for
training set, this method is proved to be very fast, when testing
new face images. However, in [4] Matthew Turk and Alex Pentland
found that Eigenfaces are greatly affected by non-homogeneous
conditions. The recognition rate drops from 84% of accuracy,
possessing images of the same size to 64%, when size variations
are presented.

Linear Discriminant Analysis (LDA) (also called Fisherfaces)
[5] proposed in 2004, is generally superior to PCA because of
the selection of the more robust feature subsets. It allows finding
an optimal projection of the image onto the feature space so as
to minimize the intraclass and maximize the interclass distance
in the feature space. LDA shows a high recognition rate (about
94%) under different operational scenario conditions such as
illumination and face expressions. Nevertheless, the linearity of
methods like Eigenfaces/PCA, Fisherfaces/LDA assumes that they
actually exploit only first and second order statistics. However, in
[6] Bartlett Marian et al prove that first and second order statistics
possess only aptitude-spectrum of an image, while experiments
show that the human mechanism of recognition is primarily
based on the phase-spectrum. Consequently, these methods might
preserve redundant facial information, which impacts negatively
the algorithm performance as well as computation time.

As one of the alternatives of the linear methods Elastic
Bunch Graph Matching (EBGM) was proposed [7]. EBGM
represents individual faces using graph architecture. An image
graph representing an image contains nodes located at facial
landmarks such as the pupils or the corners of the mouth. The
face identification is performed by matching a new image structure
with each graph in the training set, and the best match specifies
the identity of person.

In the last decade three-dimensional recognition methods have
become popular as they provide better robustness compared to two-
dimensional techniques. A typical 3D face identification algorithm
derives feature sets not directly from a 2D face image, but from
a 3D model generated from it. Having a 3D facial model allows
face images to be acquired from different rotation angles as well
as head poses. It grants 3D methods a significant advantage over
static 2D techniques. The main drawback of 3D methods is the
computational cost of automatic 3D model creation as well as the
often poor quality of the 3D images affecting the recognition rate.

Another holistic approach to the problem was to employ
orthogonal moments [8] as feature descriptors. These moments
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are defined over the set of orthogonal polynomials and their
orthogonality assures the non-redundancy of the feature set. In
[9] the continuous orthogonal Zernike moments are utilized for
feature description of face images taken over a time lapse,
demonstrating moment approach to be a promising instrument for
Face Recognition. However, since Zernike moment kernels are
polynomials of continuous variables defined over a complex plane,
numerical approximation and image coordinates transformation
are required. It leads to an extra computational complexity as
well as discretization error. To overcome the drawbacks of the
continuous moments, Mukundan et al. proposed a set of discrete
orthogonal moments based on the discrete Tchebichef polynomials
[10]. Using these basis functions eliminates the need for numerical
approximation, but at the same time preserves the orthogonality
property. Tchebichef moments retain global image characteristics,
whereas Krawtchuk moments [11] are capable of expressing an
image locally. Both of them showed good results in various
applications from Image Reconstruction to Face Recognition [12],
[13].

This research focuses on the effectiveness of discrete orthogonal
Hahn moments [14] as feature descriptors. The set of Hahn
moments becomes Tchebishef or Krawtchuk moments depending
on how the specific parameters of the Hahn kernel polynomials are
set. Namely, Hahn moments are a general case of Tchebishef and
Krawtchuk moments, and thus are able to retain global and local
image characteristics. This is a particularly useful quality of Hahn
moments, because it allows us to perform not only conventional
appearance-based recognition, but also “recognition-by-parts”, i.e.
recognition by local facial regions. Moreover, the combination of
global and local Hahn moments can provide a more powerful
feature set.

To assess the performance of Hahn moment feature description
we created a face recognition system which uses holistic (global
moments), compositional (local moments) and hybrid (fusion of
the global and local moments) approaches for feature extraction
and k-nearest neighbour classifier for classification (Section III).
We tested the system on the ORL face database [15] which
contains 400 images presenting variability of expression, head
pose and illumination, and obtained 93% of correctly recognized
samples using hybrid approach (Section III.A). Furthermore, the
proposed system efficiency was tested on the UND database [16],
[17]. A particular difficulty in utilizing this database is that the
images were taken over a time lapse. Thus, appearances of the
subjects change significantly between sessions. Nevertheless, the
recognition of 20 randomly selected individuals resulted in 94%
rate in the hybrid mode (Section III.B). Finally, we provide the
analysis of Hahn moments shortcomings and some insights on how
to overcome them (Section IV).

II. DISCRETE ORTHOGONAL HAHN MOMENTS

Generally, moments can be considered as scalar values which
describe a function in a way of capturing its substantial features.
Mathematically, they are thought to be “projections” of a function
onto a polynomial basis [18].
The definition of a general moment M

(f)
pq of an image f(x, y)

where p, q are non-negative integers and r = p + q is called the

order of the moment is given as

M (f)
pq =

∫∫
D

ρpq(x, y)f(x, y) dx dy (1)

where ρ00(x, y), ρ10(x, y), ..., ρij(x, y) are polynomial kernel
functions defined on D. Hence, given a digitized image f(x, y) of
size N×M , for discrete moments we have the following notation:

M (f)
nm =

N−1∑
x=0

M−1∑
y=0

ρn(x,N)ρm(y,M)f(x, y) (2)

Different types of the basis polynomials ρnm(x, y) produce
different moment sets. To get Hahn moments we should employ
Hahn polynomials h

(μ,ν)
n (x,N), which are defined as follows

h(μ,ν)
n (x,N) = (N + ν − 1)n(N − 1)n×

×
n∑

k=0

(−1)k
(−n)k(−x)k(2N + μ+ ν − n− 1)k

(N + ν − 1)k(N − 1)k

1

k!
(3)

where (a)k = a(a+1)(a+2)...(a+k−1) = (a+k+−1)!/(a−1)! is
the Pochhammer symbol and parameters μ > −1, ν > −1 specify
the shape of the polynomials. Orthogonality condition for Hahn
polynomials is expressed by

N−1∑
x=0

w(x)h(μ,ν)
n (x,N)h(μ,ν)

m (x,N) = d2nδmn (4)

Here δmn is the Dirac impulse symbol, d2n represents the square
norm given by

d2n =
Γ(2N + μ+ ν − n)

(2N + μ+ ν − 2n− 1)Γ(N + μ+ ν − n)
×

× 1

Γ(N + μ− n)Γ(N + ν − n)Γ(n+ 1)Γ(N − n)
(5)

and w(x) denotes the weight function

w(x) = [Γ(x+ 1)Γ(x+ μ+ 1)Γ(N + ν − x)Γ(N − x)]−1 (6)

where Γ(a) = (a− 1)! is the gamma function.
Considering these equations, it is obvious that the values
of the Hahn polynomials dramatically grow as the order
increases. Consequently, they are technically inappropriate for
moment computation. To overcome numerical instability, the Hahn
polynomials are scaled by a factor, typically using the square
norm and the weight function. Hence, we obtain weighted Hahn
polynomials expressed as

h̃(μ,ν)
n (x,N) = h(μ,ν)

n (x,N)

√
w(x)

d2n
, (7)

where n = 0, 1, ..., N−1. In such case, the orthogonality condition
transforms to an equation of the form

N−1∑
x=0

h̃(μ,ν)
n (x,N)h̃(μ,ν)

m (x,N) = δmn (8)
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where n,m = 0, 1, ..., N − 1. Finally, to compute Hahn moments
of the digital image f(x, y) using the weighted Hahn polynomials,
the following expression is applied

Hnm =

N−1∑
x=0

M−1∑
y=0

h̃(μ,ν)
n (x,N)h̃(μ,ν)

m (x,M)f(x, y) (9)

Computational Cost and Recurrence Relations: The use of
Hahn moments as feature descriptors can be very computational
expensive because of the complexity of the polynomial equations.
Operations like factorials and gamma functions slow down the
system, and virtually make it inexpedient. However, the orthogonal
moments can be computed recurrently, reducing computation time
significantly. The recurrence relation of the Hahn polynomials has
the following view

Ah̃(μ,ν)
n (x,N) = B

√
d2n−1

d2n
h̃
(μ,ν)
n−1 (x,N)+

+ C

√
d2n−2

d2n
h̃
(μ,ν)
n−2 (x,N), n = 2, 3, ..., N − 1 (10)

where

A = − n(2N + μ+ ν − n)

(2N + μ+ ν − 2n+ 1)(2N + μ+ ν − 2n)
, (11)

B = x− 2(N − 1) + ν − μ

4
−

− (μ2 − ν2)(2N + μ+ ν)

4(2N + μ+ ν − 2n+ 2)(2N + μ+ ν − 2n)
, (12)

C =
(N − n+ 1)(N − n+ μ+ 1)

(2N + μ+ ν − 2n+ 2)
×

× (N − n+ ν + 1)(N − n+ μ+ ν + 1)

(2N + μ+ ν − 2n+ 1)
. (13)

It is easy to compute the zero-order Hahn polynomial, using (3)
and (7):

h̃
(μ,ν)
0 (x,N) =

√
w(x)

d20
(14)

Accordingly, the first-order Hahn polynomial is found by

h̃
(μ,ν)
1 (x,N) =

{
(N + ν − 1)(N − 1)−

− (2N + μ+ ν − 2)x
}√w(x)

d21
(15)

A. Matrix notation

Most of the modern computing environments are equipped
with fast matrix calculation modules. Therefore, it is thrifty to
carry out all computations in the matrix notation to speed up the
performance.

To obtain the Hahn image moment set in the matrix notation we
use the following representation [19]

H = HT
x fHy (16)

where f designates the image matrix of N ×M size and

Hx =
[
h̃
(μ,ν)
0 (x,N), h̃

(μ,ν)
1 (x,N), ..., h̃N − 1(μ,ν)(x,N)

]T

Hy =
[
h̃
(μ,ν)
0 (y,M), h̃

(μ,ν)
1 (y,M), ..., h̃M − 1(μ,ν)(y,M)

]T

Each element h̃
(μ,ν)
k (x,N) of these vectors is a vector itself

defined as

h̃
(μ,ν)
k (x,N) =

[
h̃
(μ,ν)
k (0, N), h̃

(μ,ν)
k (1,K), ..., h̃

(μ,ν)
k (N − 1, N)

]

B. Parameter Selection

As it was mentioned, a Hahn polynomial has a pair of the
parameters {μ, ν} defining its shape. Consequently, for a Hahn
moment Hnm of the order n + m we have a set of parameters
{μ1, ν1, μ2, ν2} which controls the region of emphasis in an image.
Here μ1 = p1t1, ν1 = (1 − p1)t1, μ2 = p2t2, ν2 = (1 − p2)t2
[14]. The values t1, t2 are responsible for adjusting global-local
trade-off. The closer to zero they are, the more global coverage
of the moments is. To extract local information, we should have
t1 >> 2N , t2 >> 2M . Empirically derived, that the optimal
values are equal to respectively 20N and 20M . The arguments
p1 = xr/N, p2 = yr/N actually control the region of interest
(ROI). Here {xr, yr} are the coordinates of the centre of the
coverage area. To demonstrate the selective feature extraction,
we perform image reconstruction using Hahn moments [19] using
different parameter sets. The result is shown below in Fig.1.

Fig. 1: The face image of size 90 × 85 is reconstructed using
the Hahn moments of the orders n = 19,m = 19 and the
parameters (a) global mode {μ1 = 0, ν1 = 0, μ2 = 0, ν2 = 0},
(b) local mode, image centre {μ1 = 180, ν1 = 170, μ2 =
180, ν2 = 170)}, (c) local mode, vertical orientation {μ1 =
0, ν1 = 0, μ2 = 180, ν2 = 170)}, (d) local mode, lower part
{μ1 = 180, ν1 = 0, μ2 = 0, ν2 = 0)}, (e) local mode, right half
{μ1 = 0, ν1 = 0, μ2 = 180, ν2 = 0)},(f) local mode, right bottom
{μ1 = 180, ν1 = 0, μ2 = 180, ν2 = 0)}
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III. PROPOSED SYSTEM AND EXPERIMENTAL RESULTS

The system presented in this work consists of three conventional
stages: image preprocessing, feature extraction and classification,
which is basically matching a new sample to the best candidate
among the training set. Fig.2 illustrates the general structure of
the system.

Fig. 2: The general scheme of the proposed system
Preprocessing stage includes face localization using the Viola-

Jones object detection framework [20]. For simplification, we
assume there is only one face per image. When the face region
is located, its orientation normalization is performed. For this,
firstly we find the eye ball regions using the same Viola-Jones
algorithm, and then create a line connecting them. We define the
image rotation angle as the line’s slope angle relative to the x axis
of the image. If the line is descending from left to right, the final
rotation angle should be with the opposite sign. To get a natural
oval facial region, we use a classical approximation algorithm [21]
to fit an ellipse to the set of the coordinates that define the Viola-
Jones rectangular face box. Finally, we resize all images to the
universal size of 90× 85.
As it is shown in Fig.2 there are five feature sets: one for the global
moments and four for the local ones. To carry out “recognition-
by-parts” we compute Hahn moments of the upper, lower, left and
right halves of the face, using the following parameters:

TABLE I
WEIGHTING PARAMETERS OF HAHN MOMENTS FOR

EXTRACTING GLOBAL AND LOCAL FEATURES

ROI μ1 ν1 μ2 ν2
Global 0 0 0 0
Left 0 0 0 170
Right 0 0 170 0
Top 0 180 0 0
Bottom 180 0 0 0

To find the best match for a testing entity among the feature
vector database, we apply the well-known k-Nearest Neighbour
(k-NN) classifier. k-NN classification is based on the property
of “similarity”. An object is classified to the group which the
majority of its neighbours belong to. The measure of similarity or
the property of neighbourhood is defined by a distance function.
In our experiments we use Euclidean and Manhattan (city-block)
distances. However, carrying out classification in the hybrid mode
implies that we should combine local and global feature sets
somehow. Fusion module sums up the Euclidean (or Manhattan)
distances in the same manner as described in [13]. Having a
pattern z = [z1, z2, z3, z4, z5] , where z1 is the global moment
vector and z2, z3, z4, z5 are the local moment vectors, the summed
normalized distance between the testing sample z and the training
item zi = [z1i , z

2
i , z

3
i , z

4
i , z

5
i ] is equal to

g(z, zi) =

∥∥∥z1 − z1i

∥∥∥
∑L

j=1

∥∥∥z1 − z1j

∥∥∥
+

∥∥∥z2 − z2i

∥∥∥
∑L

j=1

∥∥∥z2 − z2j

∥∥∥
+

∥∥∥z3 − z3i

∥∥∥
∑L

j=1

∥∥∥z3 − z3j

∥∥∥

+

∥∥∥z4 − z4i

∥∥∥
∑L

j=1

∥∥∥z4 − z4j

∥∥∥
+

∥∥∥z5 − z5i

∥∥∥
∑L

j=1

∥∥∥z5 − z5j

∥∥∥
(17)

where L is the total number of the training samples. The formal
definition of the k-NN classification rule is defined as follows

g(z, zl) = g(z, zj) → h ∈ ωl (18)

The training sample vector z is identified with the group of the
minimum distance based on the similarity metric g. In other words,
if k nearest neighbours of z in the training set belong to the class
l, then z belongs to the class l either. The parameter k defining
the sufficient number of the closest neighbours is usually adjusted
empirically.

A. ORL experiment

ORL collection owned by AT&T Laboratories, Cambridge [22]
consists of 400 images of 20 subjects. The pose, rotation and
expression variations are broadly presented in the database. We
randomly selected 200 images for the training and the remaining
200 samples for the testing, with no overlap between the sets. Fig.
3 shows original instances from the database as well as the output
of the preprocessing.

Fig. 3: Sample of images in the ORL database (top row) and the
result of their preprocessing (bottom row)

Our prior goal was to empirically find the most optimal moment
order, because lower orders can result in poor performance
whereas higher order moments are computationally expensive and
can also result in poor performance due to redundant information.
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Fig. 4 demonstrates the obtained hit rates against the moment
orders with the moment parameters set to 0 (global mode).

Fig. 4: The dependence of the correct recognition rate on the
moment order

The system is capable of performing at the rate of 63% correctly
recognized items with the moment orders n = 2,m = 2.
Moreover, relatively low orders n = 5,m = 5 allows the
algorithm to achieve 89% of the hit rate. It proves that Hahn
moment feature descriptors possess very powerful discriminating
properties. However, lower-order moments describe facial features
rather generally, which results in getting smaller interclass
distances between the data points. Further analysis of the graph
leads us to conclude that the optimal value of the order is 12 with
its 91.5% correctly recognized objects. The subsequent decrease in
the quality of the classification is due to the fact that higher-order
moments contribute more detailed information to the biometric
signature of the entity. This in turn causes an increase of intraclass
distances, and, as a consequence, an increase of misclassification.
In the research [13] dedicated to the assessment of performance
of the Krawtchouk moments, the authors choose orders 12, 19 and
29. In order to properly compare two discrete moment approaches,
we opted for the same order values in the subsequent study.
To assess separately the holistic and compositional approaches,
we computed the corresponding feature sets and performed the
classifying without feature fusion. The results are given in Table
II.

TABLE II
THE RESULTS OF GLOBAL AND LOCAL MODE RECOGNITION

Face region Order n,m
12 19 29

Full face (global mode) 91.5% 90% 91%
Left 82% 86.5% 89%
Right 82% 86.5% 89%
Top 81% 86.5% 87.5%
Bottom 70.5% 78% 83.5%

From Table II we can clearly see that with the increase of the
order, the gap between global and local mode effectiveness is
reduced. The left and right facial half features are able to provide
86.5% of the hit rate with the order 19, and 89% with the order

29, which is only 2 % less than recognizing a full face. Thus,
for the hybrid mode we may not combine all the feature vectors,
but select the most efficient ones. We choose to perform various
hybrid mode trials with the moments of order 19, because they
are faster to compute and are still reasonably powerful. The results
are compared with Krawtchuk moments and presented in the table
below.

TABLE III
EFFECT ON THE RECOGNITION RATE OF VARIOUS FEATURE

COMBINATIONS

Combination of features Hahn
moments

Krawtchuk
moments

Full face (global mode) 90% 89.5%
Full + Top 88.5% 88.5%
Full + Bottom 88% 88%
Full + Left 89.5% 89.5%
Full + Right 92.5% 91.5%
Full + Top + Bottom 91.5% 91%
Full + Left + Right 92.5% 92.5%
Full + Top + Bottom +
Left + Right

93% 92.5%

The highest hit rate of 93% is achieved with fully hybrid mode
that combines the global and all the local feature vectors. However,
the difference in performance between fully hybrid mode and the
one using left and right facial halves is almost negligible. Another
interesting observation is that recognition by full face and the right
half is more efficient than with the left one, although individually
they contribute equally.
Obviously, in general, Hahn moments tend to outperform
Krawtchuk moments, but concerning “recognition-by-parts” the
discrepancy is insignificant.

B. UND experiment

To reinforce efficiency of a biometric algorithm, we should
verify it using more than only one database, otherwise the
effectiveness of the algorithm might simply stem from its over-
fitting to the input data. The University of Notre-Dame X1
biometrics collection was chosen for an additional testing. This
database contains 2292 frontal face images from 82 subjects
captured from 2002 to 2004. For the experiment we randomly
selected 20 subjects. Each of them attended 10 acquisition sessions
for each season. Hence, the first ten session images are used for
training and the next ten images are used for testing. There is
also no overlap between testing and training sets. Head rotation
allowance is at most 15 degrees. The preprocessing stage is
carried out in technically the same manner as in the previous
experiment. In addition the images were converted to grayscale
colour depth, but no histogram equalization was performed, as
we wanted to assess the actual algorithm’s robustness to the
illumination variability. Sample input and preprocessed images of
a single subject are given in Fig. 5.
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Fig. 5: Sample of images in the UND database (top row) and the
result of their preprocessing (bottom row)

In the first experiment we computed feature vectors of up to
order n + m = 19 and carrying out classification with various
feature set combinations. Furthermore, Manhattan distance was
employed to determine the similarity between the data points.
Manhattan distance, also called taxicab metric is a simple metric
which measures distance following only axis-aligned directions. It
is defined by

g((x1, x2), (y1, y2)) = |x1 − x2|+ |y1 − y2| (19)

for all points P1(x1, y1) and P2(x2, y2). Consequently, Euclidean
norm in (17) is replaced by Manhattan norm, leading to the new
expression for feature set fusion:

g(z, zi) =
|z1 − z1i |∑L
j=1 |z1 − z1j |

+
|z2 − z2i |∑L
j=1 |z2 − z2j |

+
|z3 − z3i |∑L
j=1 |z3 − z3j |

+

+
|z4 − z4i |∑L
j=1 |z4 − z4j |

+
|z5 − z5i |∑L
j=1 |z5 − z5j |

(20)

The comparative results of the used metrics’ performance is
presented on the table below.

TABLE IV
EFFECT OF USING DIFFERENT SIMILARITY METRICS ON THE

RECOGNITION RATE

Feature Set Combination Distance
Euclidean Manhattan

Global 85% 92.5%
Left 80% 85%
Right 80.5% 87%
Top 73% 72.5%
Bottom 69.5% 64%
Fully Hybrid 89.5% 90.5%
Global + Left + Right + Top 85% 91%
Global + Left + Right 87.5% 92.5%
Global + Top 85% 87%
Global + Bottom 86.5% 86%
Global + Left 83% 90.5%
Global + Right 88.5% 94%

The interesting outcome of the experiment is that using the
less complex metric produces better results. Moreover, Manhattan
distance classification using the whole face and its right half
proved to be more robust than the complete hybrid set. Even
utilizing only global moments gives the impressive hit rate of
92.5%. In addition, Manhattan distance computation is twice as
fast compared to the computation of Euclidean distance, which is
very important for the feasible design of biometric identification
systems.

IV. CONCLUSION

This research proved the powerful descriptive capacity of
Discrete Orthogonal Hahn moments. The accuracy of Hahn
moment feature descriptors was assessed on the ORL and
UND databases by using the hybrid identification scheme as
well as individually holistic and compositional approaches. The
obtained results show that generally Hahn moments outperformed
Krawtchuk moments. Euclidean and Manhattan objective functions
were employed in k-NN classfier and demonstrated significant
discrepancy in recognition accuracy for the UND database images.
Computation of higher-order Hahn moments (n +m = 19) for a
single grayscale testing image of size 90×85 takes 0.44 sec, which
is sufficiently fast for the most applications.
As any other technique, utilizing discrete moments as feature
vectors has its pitfalls. First of all, it is the predominance of
empirically adjusted parameters of feature extraction. There is
no formal relation which would define the most optimal moment
order or the polynomial parameters. Another shortcoming is that
in order to avoid complex preprocessing, we have to compute
moment invariants [23] to achieve rotation and scale invariance.
Therefore, the prospects of the future work are to find a formal
definition of the optimal moment parameters in terms of their
relation to the input data. Furthermore, the performance of Hahn
moment feature description should be assessed with the other
classification techniques, such as Support Vector Machine or fuzzy
k-NN classifier. Finally, using Hahn moments as neural network
input would provide a combination of nonlinear feature selection
along with nonlinear classification.
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