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Abstract—This paper deals with nonlinear vibration analysis
using finite element method for frame structures consisting of elastic
and viscoelastic damping layers supported by multiple nonlinear
concentrated springs with hysteresis damping. The frame is supported
by four nonlinear concentrated springs near the four corners. The
restoring forces of the springs have cubic non-linearity and linear
component of the nonlinear springs has complex quantity to represent
linear hysteresis damping. The damping layer of the frame structures
has complex modulus of elasticity. Further, the discretized equations in
physical coordinate are transformed into the nonlinear ordinary
coupled differential equations using normal coordinate corresponding
to linear natural modes. Comparing shares of strain energy of the
elastic frame, the damping layer and the springs, we evaluate the
influences of the damping couplings on the linear and nonlinear impact
responses. We also investigate influences of damping changed by
stiffness of the elastic frame on the nonlinear coupling in the damped
impact responses.

Keywords—Dynamic response, Nonlinear impact response, Finite
Element analysis, Numerical analysis.

1. INTRODUCTION

PRINGS are often used not only for heavy structures but

also for lightweight structures such as parts in automobiles
to insulate them from external vibrations and shocks. However,
in many cases, the stiffness of a lightweight structure is not
sufficiently high for the structure to be considered rigid. Thus,
in dynamic analysis, it is necessary to deal with these structures
as elastic bodies. If the structures comprise resins, they should
be treated as viscoelastic bodies.

Many researchers have studied for the nonlinear vibrations
of concentrated masses with springs [1]. The authors previously
proposed a fast numerical method to compute the nonlinear
vibrations in an elastic/viscoelastic block with a nonlinear
spring [2].

To reduce vibrations, viecoelastic damping materials are
often laminated on the metal structures. Damping
characteristics (e.g. modal loss factors) of these laminated
panels are affected by not only properties of the viscoelastic
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materials but also stiffness of the metal panels. To calculate the
modal loss factors, which corresponds to modal damping when
the structure are deformed as eigenmodes at resonant
frequencies, complex eigenvalue analysis are often used. To
compute the modal loss factors using FEM under linear
problem, Johnson proposed Modal Strain Energy Method (i.e.
MSE Method) [3], [4]. Using this method, the modal loss
factors can be computed using material loss factor for each
element and the ratio of modal strain energy for each element to
total modal strain energy. This method is very useful to
investigate damping mechanism in the metal structures with
viscoelastic layers. However, there are few reports to treat
nonlinear vibration problem of the metal structures with
viscoelastic damping layers supported by nonlinear spring.
This paper describes vibration analysis using FEM for elastic
structures with viscoelastic layers connected with nonlinear
springs with hysteresis. We think this is a simplified model of a
sub-frame supported by rubber mounts in automotive
suspensions. The restoring force of the spring is expressed as
power series of its deformation. A complex spring constant is
introduced for the linear component of the restoring force. The
finite elements for the nonlinear spring are expressed and they
are attached to the elastic/ viscoelastic structures, which are
modeled as solid finite elements with a complex modulus of
elasticity. We obtain the nonlinear discrete equations of motion
for the whole structure. To get modal loss factors, we introduce
small parameters concerning damping to complex eigenvalue
problem of the equations under small deformation. And we
obtain asymptotic equations from the zero and first orders.
Then, the approximate modal loss factors are obtained like
MSE. Further, by introducing normal coordinate corresponding
to eigenmodes. The nonlinear discrete equations in physical
coordinates are transformed into nonlinear ordinary coupled
equations. The transformed equations are rapidly computed to
obtain the nonlinear transient responses with a fairly small dof.
As a numerical example of this proposed FEM, we deal with
elastic frames with damping layers supported by multiple
nonlinear springs with hysteresis. Using the proposed method,
we show new phenomena including nonlinear coupling
motions among nonlinear springs with hysteresis and elastic
frames and viscoelastic layers. We clarify influences of
amplitude of the impact force on nonlinear transient responses.

II. NUMERICAL MODEL

We use a simplified simulation model for frame structures
supported by springs on four corners of the frame as shown in
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Fig. 1. We set the origin at one corner as shown in Fig. 1 in the
x y plane on the upper surface of the frame. There exist four
nonlinear springs in the z direction on each four corners.
Further, on these corners, linear springs are set both in the x and
y directions. The frame structures are composed of a steel frame
and a viscoelastic damping layer. Fig. 2 shows three models
which we investigate. The detail geometry of the models are
shown in this figure. “Elastic Frame Model” as shown in Fig. 2
has only a steel frame. This has no viscoelastic damping layer.
“Elastic Frame model with Damping Layer” has a steel frame
with a damping layer. Thickness of the frame is 10mm and the
thickness of the damping layer is 20mm. “High Stiffness
Elastic Frame model with Damping Layer” has also a steel
frame and a damping layer. But, thickness of the steel frame is
20mm which is twice of the thickness for “Elastic Frame model
with Damping Layer”.

The concentrated nonlinear springs in the z direction have
cubic nonlinearity in the relation between their displacement
u,. and their restoring force R, as shown in Fig. 3. Linear

hysteresis damping is introduced into the restoring force of the
nonlinear springs. Namely, linear components of the spring
constants have complex quantity as y, =7 (1+,n,)- 1, shows

the loss factor of the springs. Further, there also exist linear
concentrated springs in x and y directions at the corners.
These linear springs have the same complex quantity as the
linear component of the nonlinear springs. As shown in Fig. 1,
the excitation point is (x, y ,z )=(575,30,0) on the upper
surface of the steel frame. We evaluate impact responses of this
simulation model. The evaluation pointis (x, y ) = (575, 30) in
Fig. 2 on the bottom surface of the frame with the damping
layer.

III. NUMERICAL METHOD

We demonstrate a numerical method to calculate nonlinear
responses by considering coupled damping properties for the
elastic structures having viscoelastic damping layers connected
to the nonlinear concentrated springs with linear hysteresis
damping.

A. Discretized Equation for Nonlinear Concentrated Springs
with Linear Hysteresis

First, we show discretized equations for the nonlinear
concentrated springs with linear hysteresis [2]. We assumed
that the nonlinear concentrated springs with viscoelasticity
have the principal elastic axes in the Z direction as illustrated
in Fig. 1. We introduce the displacement as y,_, (m =1,2,3,...)

in the z direction at the nodal points ¢, (m=1,2,3,...) where

the nonlinear springs are attached with the steel frame. The
nodal force at the point o is expressed using the power series

ofy,_. When cubic nonlinearity is assumed, the restoring force

R, _of the spring can be expressed as:

— 2 3
Rmz =V iUz +7/2mzumz + 73mzumz (1)
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Fig. 3 Restoring force of nonlinear springs

Next, linear hysteresis
Jj is the imaginary unit. 7, _

damping is introduced as
7 =7, (14 jn)- is the real part of
Vim» While 77, is the material loss factor of the spring. The

relation in (1) can be rewritten in the matrix form as:

&} =17, Y., 1+ 10, @)

00 0] _ )
[7.]=l0 0 o dm}= {050772m:umzz +73mzumz3} 3)
00 7,

where (g 1= {R ,R_.R, } ‘R, =R, =0, is the nodal force

my?
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vector at the node ¢, . {usm}:{umx’u " }r is the nodal

displacement vector at the node ¢, . [7,,]is the complex
stiffness matrix involving the linear term of the restoring force.
{Jm} is the vector containing the nonlinear terms of the
restoring force.

B. Discrete Equation for Elastic Frame and Viscoelastic
Damping Material

Forvibration of the steel frame and the viscoelastic damping
material, we used discretized equations written in the following
expressions from (4) and (5). They correspond to conventional
linear finite element model in consideration of linear hysteresis

damping. Stress-strain relation and strain-displacement relation
are expressed as:

[ L4, +[K L g =47, )

[K,], and [ ], are the element stiffness matrix and element
mass matrix, respectively. {f.},and {y } are the nodal force

vector and nodal displacement vector in an element e.

By replacing complex modulus of elasticity with real
modulus of elasticity, the viscoelastic damping layer can be
modeled using finite elements. Consequently, the element
stiffness matrix [K ] in (4) becomes to have complex

quantities in (5):
[k.] =[KalO+/n.) ®)

[K;], is the real part of element stiffness matrix for the
viscoelastic damping material. 77 , is the material loss factor

corresponding to each element e .

For the elastic and the viscoelastic materials, isoparametric
hexahedral elements with the non-conforming modes [5] are
chosen. For the viscoelastic damping material, the storage
modulus of elasticity is 8.00 X 10%(N/m?), the mass density is
1.45% 10°(kg/m’) and the material loss factor n,, 18 0.333.

C.Discrete Equations for Global System between the
Nonlinear / Linear Springs and Damped Elastic Frame

The restoring force {R }in (2) is added to the nodal force at
the connected nodes ¢, between the nonlinear concentrated

springs in the z direction and the elastic frame. Further, the
linear springs in the x and y directions are also attached. The
next equation can be obtained for the global system [2]:

i+ [+ R }= fr) 1) = 2 ©)

where { f},[K],[M], and {u} are the external force vector,
complex stiffness matrix, mass matrix, and displacement vector
in the global system, respectively. {jm} is modified from {Em}

to have a vector size identical to dof of the global system.

D.Computation of Modal Loss Factors

Next, we explain a computation method to obtain modal
damping (i.e. modal loss factor) for the concentrated springs
and the solid bodies (i.e. the elastic frame with the viscoelastic
damping layer) in the global system. We neglect the nonlinear
term under small deformation and the external force because of
resonance conditions in (6). Next, it is assumed that {u} can be

expressed as {u}={@le’* . w and f represent the angular
frequency and the time, respectively. Consequently, we have
homogeneous equation of (6), which corresponds to complex

eigenvalue problem.

emax

S KL+ jm) - @2+ M, 1.0+ )i =107

e=1

In this equation, 77, is the elements' material loss factors which

includes 77, and 77, . (»”)? is the real part of complex
eigenvalue. Superscript (i) stands for the i-the igenmode. {4}
()

.., 18 the modal loss factor. Next,

is the complex eigenvector. 77
we introduce the following S using the maximum valuep

among the elements' material loss factors 1, (€=1,2,3,. . .emx).

<1 ®)

ﬂs@ = ’7e /nmax’ ﬂse

If we assume ‘ﬂmax‘ << 1, solutions (i.e. complex eigenvalues

and complex eigenvectors) of (7) are expanded [4], [7] using a
small parameter 4= jn, . :

W= 10"+l b+ O)
(@) =(@") + (@) + (@Y (10)
jmg) = pm + o + g + g (1)

Under conditions of B.<1 and Mow| << 15 W€ can obtain

<<1- Thus, 4B can be regarded as small parameters

e Be
like ££ . In (9),(10) and (11), {g"},, {4}, {#"}, ,... and
@) (@) (@) ... and ", 7, g
quantities. By substitution of these expressions from (9) to (11)

,... have real

into (7), we obtain approximate equations using z°and u'

orders. Finally, the following equation can be derived by
arranging the approximate equations:

emax

=Y (n.52) (12)

o=l

From (12), modal loss factor 77,((’7), can be calculated using
material loss factors 5, of each element e and share sD of

strain energy of each element to total strain energy. This
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equation has the same form of MSE Method [3], [4] proposed
by Johnson. This method helps us to decrease computational
time for large-scale finite element models for the damped

structure. And in (12), 7765,52) corresponds to contribution of
each element eto i-the modal damping. Using this, we can
analyze coupled damping properties in the elastic frame with

viscoelastic damping layer supported by complex springs
having linear hysteresis.

E. Conversion to Nonlinear Equations in Normal Coordinate
from Equation in Physical Coordinate

When we compute impact responses using (6) in physical
coordinates directly, it takes considerable computational time.
We adopt a numerical procedure to diminish the degree of
freedom for the discretized equations of motion [2], [6].

We assume that the linear natural modes of vibration {3®}

can be approximated to {¢“> },- Further, the nodal displacement
vector can be expressed by introducing normal coordinates El

corresponding to the linear natural modes {¢"}  as:
ESWATRNED (13)
i=1

where
B0 =Am A =16V /1 on =11,
m, = (g M, (BN M1}, =1

By substitution of (13) into (6), the following nonlinear
ordinary simultaneous equations with regard to normal

coordinates [;ican be obtained.

b+n0"h +(0"F b + 3D, b + XX Eubhb =F "
T x i ko1

{gm}o = {%lx’%ly’%lz’%Zx’%Zy’%Zz’%}x"“}T

s

= ()T - 4 — o~
E=nid" 50 Fy Dy =3 7, (0, /(0 0)0) 8,8, B
m=1

4
Eijkl = Z Vmy (n;/(n Sy ))¢imy¢jmy¢kmy¢hny

m=1

We can save computational time because (14) has a much
smaller degree of freedom than (6).5’_mis the z-component of

the eigenmode g0y, at the m-th connected node a, between

the frame and the nonlinear springs. The damping term in (14)
can be derived in an identical form to (12).

IV. NUMERICAL RESULTS AND DISCUSSION

A. Results of and Modal Loss Factors and Eigenmodes and
Resonant Frequencies

Figs. 4 and 5 show eigenmodes (§®; , resonant frequencies

o I(2m) and modal loss factors 775;3 for modes 1 to 14 and

modes 15 to 21, respectively.

In these figures, arrows stand for directions of rigid motions
in eigenmodes especially.

We give the material loss factors of the steel frames as
n.=n, =0.001. And that of the viscoelastic damping layer is

n, =1,=0.333. Those of the springs arep, =7, =0.100.

In these figures, results for the three models are shown.
Results of “Elastic Frame Model” in Fig. 2 are the left
deformation patterns in Figs. 1 and 2. Results of “Elastic Frame
Model with Damping Layer” in Fig. 2 are the central
deformation patterns. Results of “High Stiffness Elastic Frame
Model with Damping Layer” in Fig. 2 are the right deformation
patterns.

In this paper, material loss factor 175=0.100 of the springs are

larger than 7 =0.001 of the steel frame. If eigenmodes include
no elastic deformation of the steel frame, the modal loss factors

are close to s=0.100. Thus, modal loss factor Mot =0.996 of

mode 4 (i.e. rigid mode of the frame) is larger than Mo =0.0014
for mode 13 (i.e. elastic mode of the steel frame). Because the
deformation of the springs is dominant in mode 4, the share of
the strain energy in (12) in the springs is large. This leads to
high modal loss factor. On the other hand, the deformation of
the springs is small in modes from 10 to 20 due to the elastic
mode of the steel frame without damping layer. This leads to
low modal loss factor.

For mode 2 including both rotation of the steel frame about
the x axis and elastic deformation of the frame, the modal loss
factor 77 =0.0564 is middle value between those for modes 4
and 13. These phenomena are generated due to dependence of
eigenmodes on the share of the strain energy in (12).

Modal loss factor 77,, of mode 10 for “Elastic Frame Model
with Damping Layer” is larger than that of mode 10 for “Elastic
frame Model”. Because the viscoelastic damping material has
high material loss factor 7,=0.333, modal loss factors 7, for
modes from 10 to 20 including elastic deformation of the frame
increase.

If we assume to remove the springs, we set that modal loss
factors 77, of the laminate (i.e. 10mm thickness of the steel
frame plus 10mm thickness of the damping layer) are less than
the material loss factor 7 =0.100 of the springs. Therefore 7, ,
=0.997 of mode 4 including larger deformations in the springs
is larger than 77, =0.0467 of model3 including larger elastic

deformation in the steel frame. Modal loss factor n,, =0.0564

of mode 2 shows a middle value between them (i.e. modes 4
and 13) because this mode contains both elastic deformation in
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Fig. 5 Vibration modes for mode 15 to mode 20

Because thickness of the steel frame for this model is 20mm,
which is double for “Elastic Frame Model with Damping
Layer”, this frame has higher stiffness. However, due to this
high rigidity, damping decreases for modes from 10 to 20
having large deformation in the frame. For instance, modal loss
factor 77,,=0.0166 of this model for mode 16 is less than 77, ,

=0.0511 of “Elastic Frame Model with Damping Layer” for
mode 15. According to (12), not only material loss factors but
also share of strain energy is required to increase modal loss
factors. Therefore, to increase modal loss factors of the frame
with the damping layer, high share of the strain energy in the
viscoelastic damping layer is required. Actually, we can find
lower share of strain energy of the steel frame for “Elastic
Frame Model with Damping Layer” as shown in Fig. 7 than that
for “High Stiffness Elastic Frame Model with Damping Layer”
as shown in Fig. 6. Using the proposed method, this
phenomenon can be also explained roughly by Oberst
expression [8] from theoretical analysis using complex flexural
rigidity for bending vibrations of a beam having a
non-constraint type viscoelastic damping layer. Damping
becomes low when neutral plane of the frame with viscoelastic
layer is apart from the damping layer.

As we mentioned before, this model has the thick frame. Due
to high stiffness of the frame, elastic deformations of the steel
frame become very small in modes 1 to 6, which we can almost
regard as rigid motions for the frame. This leads that modal loss
factors for these modes are close to the value of the material
loss factor 7, =0.100 of the springs.
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Fig. 6 Strain energy distribution in steel frame for “High Stiffness
Elastic Frame Model with Damping Layer”(Mode 16)
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Fig. 7 Strain energy distribution in steel frame for “Elastic Frame
Model with Damping Layer”(Mode 15)
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Fig. 12 Fourier spectrum of impact response for “Elastic Frame Model
with Damping Layer” under large input (‘ fmax‘ =9.8x10°N)

A. Results of Impact Responses
By changing the maximum amplitude |foma | of the impact as

shown in Fig. 8 under a constant pulse width 0.001 (s), transient
time histories are computed. In Fig. 8, the ordinate Fj,
represents force amplitude, while the abscissa 7 shows time.
And we evaluate displacement at the evaluation point on the
frame as shown in Fig. 1.

In Figs. 9 and 10, the ordinate represents amplitude of
frequency response function A4(f; ) while the abscissa shows

Fourier frequency £ As for (m) in Fig. 9, m denotes m-th

vibration mode. For (m, n) in Fig. 10, m denotes m-th vibration
mode and n denotes types of the frequency response function.
For instance, n=3 shows super-harmonic component of the
third order and n=1/2 represents sub- harmonic component of
the 1/2 order.0 (dB) represents the amplitude of the spectrum
equals 1(mm) for 4(f, ») in these figures. Fig. 9 represents the

frequency response function of a time history under the small
impact force fro| = 0.98(N). And Fig. 10 shows the frequency

response function of the time history under the extraordinary
large impact force | e =9.8x

Under the small input force ‘ fmax‘:O.98 (N) in Fig. 9, the

peaks of the modes 1,2,5,7,9, 10,11,13,15,16,17 and 20 appear
in the frequency response function mainly. Because excitation
force in the z direction is acted on and the direction of
observation is z, these modes include large amplitudes in the z
direction.
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Due to small modal loss factors including large elastic
deformations in the steel frame and small deformation in the
springs with linear hysteresis, the peaks for modes from 10 to
20 show sharp and have large amplitudes.

Under the extraordinary large input force | ]| =9.8x10°(N)

in Fig. 10, there exist many peaks (i.e. not only fundamental
components but also super harmonic, sub-harmonic
components and internal resonances) for modes including large
deformation in the nonlinear springs in the frequency response
function.

We investigate linear and nonlinear transient responses for
“Elastic Frame Model with Damping Layer”. Fig. 11 represents
the frequency response function of a time history under the
small impact force || = 0.98(N). Fig. 12 shows the frequency

response function under the extraordinary large impact force
o =9.8x10°(N).

Under the small input force fowe| = 0.98 (N) in Fig. 11, the

peaks of the modes 1,2,5,7,9, 10,11,13,15,16,17 and 20 appear
in the frequency response function like Fig. 9 for the model
without damping layer. However, the amplitudes decrease for
the peaks for modes from 10 to 20 including large deformations
in the frame with damping layer. On the other hand, in
comparison with Fig. 9, there exist small changes in the peaks
for modes 3, 4 and 6 including large deformation in the springs
and small deformations in the frame.

Under the extraordinary large input force fro| = 9.8x10°(N)

in Fig. 12, in comparison with Fig. 10 for the model without
damping layer, number of the nonlinear peaks decrease.
Especially, due to higher damping, this phenomenon is
outstanding for modes from 10 to 20 including large
deformation in the frame with the damping layer. Therefore, the
damping layer enables us to diminish the nonlinear coupling in
the transient response.

Next, we investigate the transient responses for “High
Stiffness Elastic Frame Model with Damping Layer” and
clarify influences of the stiffness of the steel frame on linear /
nonlinear transient responses. As we stated previously in
previous section A, modal loss factors of this model decrease
due to high stiffness of the steel frame for modes 10 to 20
containing large deformations in the frame with the damping
layer. Fig. 13 represents the frequency response function of a
time history under the small impact force fon| = 0.98(N). Fig.

14 shows the frequency response function of a time history
under the extraordinary large impact force | f o] =9.8x10°(N).

Under the small input force ‘ fmax‘: 0.98 (N) in Fig. 13, the

peaks of the modes 1,2,4,6,7, 9,11,13,16 and 18 appear in the
frequency response function like Fig. 11 for “Elastic Frame
Model with Damping Layer”. Nevertheless, the amplitudes
increase for the peaks for modes from 10 to 20 including large
deformations in the frame with damping layer. This
phenomenon is caused by low modal loss factors of these
modes due to high stiffness of the steel frame as we explained
in previous Section 4.

Under the extraordinary large input force froa| = 9.8x10%(N)

in Fig. 14, in comparison with Fig. 12 for the model without
damping layer, number of the nonlinear peaks increase.
Especially, due to lower damping oriented from high stiffness
of the steel frame, this phenomenon is notable for modes from
10 to 20 including large deformation in the frame with the
damping layer. Therefore, if we increase the thickness of the
steel frame, damping of the frame with the damping layer
diminishes and this leads to magnify the nonlinear coupling in
the transient response, consequently.

A(f)/aB

20 dB (18)

_ﬁ»/llz

Fig. 13 Fourier spectrum of impact response for “High Stiffness
Elastic Frame Model with Damping Layer” under small input (‘ f;m‘ =

0.98 N)
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Fig. 14 Fourier spectrum of impact response for “High Stiffness
Elastic Frame Model with Damping Layer” under large input (‘ S

=9.8x10° N)

V.CONCLUSION

This paper describes vibration analysis using FEM for elastic
frames with viscoelastic layers connected with multiple
nonlinear springs with hysteresis. The restoring force of the
spring is expressed as power series of its elongation. A complex
spring constant is introduced for the linear component of the
restoring force. The finite elements for the nonlinear spring are
expressed and they are attached to the elastic/ viscoelastic
structures, which are modeled as solid finite elements with a
complex modulus of elasticity. To get modal loss factors, we
introduce small parameters concerning damping to complex
eigenvalue problem of the equations under small deformation.
And we obtain asymptotic equations from the zero and first
orders. Then, the approximate modal loss factors are obtained
like MSE. Further, by introducing normal coordinate
corresponding to eigenmodes. The nonlinear discrete equations
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in physical coordinates are transformed into nonlinear ordinary
coupled equations.

We show phenomena including nonlinear coupled damped
motions between nonlinear springs with hysteresis and elastic
frames and viscoelastic layers by increasing impact force.
Under a very large impact force as a severe condition, there
exist complicated nonlinear couplings in Fourier spectrum. Due
to high damping oriented from viscoelastic damping layer,
nonlinear peaks are diminished. When we increase thickness of
the steel frame, damping of the frame with the viscoelastic layer
decreases. This causes the spectrum of the transient response
includes more peaks due to nonlinear couplings.
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