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Abstract—In this paper, the problem of stability and stabilization 

for neutral delay-differential systems with infinite delay is 
investigated. Using Lyapunov method, new delay-independent 
sufficient condition for the stability of neutral systems with infinite 
delay is obtained in terms of linear matrix inequality (LMI). 
Memory-less state feedback controllers are then designed for the 
stabilization of the system using the feasible solution of the resulting 
LMI, which are easily solved using any optimization algorithms. 
Numerical examples are given to illustrate the results of the proposed 
methods.  

 
Keywords—Infinite delays, Lyapunov method, linear matrix 
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I. INTRODUCTION 

A. Study Background  

IFFERENTIAL equations are important model for 
harnessing different components into a single system and 

analyse the inter-relationship that exist between these 
components which otherwise might continue to remain 
independent of each other [1]. The most commonly 
encountered models in the theory of differential equations are 
those physical systems which express the present states of a 
situation. However, more realistic physical system models 
take into account the past states or history of the system, 
otherwise referred to as time delays, as well as the present 
state of situations.  

Differential equations which involve the present as well as 
the past states are called delay differential equations or 
functional differential equations. Delay differential equations 
are of two broad types: retarded functional differential 
equations and neutral functional differential equations see [1] 
and references therein. This paper focuses on the later type, in 
which the derivatives of the past history or derivatives of 
functional of the past history are involved as well as the 
present states of the system.  

The existence of time delays in a dynamical system has 
been the source of poor system performances and even 
instability. Studies involving different time delays can be 
found in ship stabilization, control processes for pressure, and 
heat transfer regulation, but, they are sometimes deliberately 
introduced into feedback systems to improve system 
performances see [2] and references therein for details.  
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B. Literatures 

Several analysis technique have been used in studying the 
stability and stabilizations of neutral systems which includes 
the Lyapunov-based, fixed point-based, and spectral radius 
approach, see [3]-[13]. The Lyapunov-based approaches which 
are the focus of application in this paper are classified into 
Razumikhin [6] and the Krasovskii [13] approaches. The 
Krasovskii’s approaches are the most widely used compared 
to other stability techniques since they often leads to LMI 
results and can be applied to a wide range of problems that 
may provide necessary and sufficient conditions. However, 
they are computationally complex and present poor scalability 
[14]. 

Several stability and stabilization of neutral systems results 
are obtained by the Lyapunov-Krasovskii approach, which 
leads to LMI results [15], [5], [8]. In particular, [8] considered 
the stability analysis of neutral delay differential systems and 
presented sufficient conditions for stability using LMI and 
Krasovskii approach. Using a similar approach [15] obtained 
delay-dependent stabilization result of neutral systems with 
saturating actuators by using static state feedback of systems 
subject to time-varying delays.  

C. Motivation and Contribution 

The study of integrodifferential equations with infinite 
delay has emerged in recent years as an independent branch of 
modern research because of its wide range of applicable areas 
see [16] and references therein. Motivated by the works of [1] 
[4], [5], [8], [15], and the wide range of applicable areas 
presented by integrodifferential equation with infinite delays 
especially in the area of epidemics and population growth, this 
paper investigates the stability and stabilization of neutral 
functional integrodifferential system with infinite delays by 
presenting a less conservative results for the stability and 
stabilization for such systems. By using LMI and the 
Lyapunov-Krasovskii approach, a new delay-independent 
condition which is sufficient to make the system uniformly 
asymptotically stable is developed. Furthermore, a new 
stabilization criterion and memory-less state feedback 
controllers are proposed using the same methods and the 
corresponding design procedures to stabilize the system. The 
paper extends other known delay independent stability results 
to neutral functional integrodifferential system with infinite 
delays; numerical examples are given to illustrate the 
effectiveness of the proposed methods 

D. Organization of the Paper 

The rest of the paper is organized as follows: Section II 
contains mathematical notations, preliminaries and definition 
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on the subject of research. In Section III, the stability results 
are presented as theorems and proofs which are based on LMI 
and the Lyapunov-Krasovskii approach. Section IV contains 
result derived from stabilization conditions and memory-less 
state feedback designed for the system using the same 
methods as in Section III. Finally, Section V contains 
numerical examples which are an illustration of the design 
procedure and effectiveness of the theoretical results prior to 
the conclusions. 

II.  NOTATIONS AND PRELIMINARIES  

A. Notations 

Suppose, 0 is a given number, ∞	,∞ ,  is a real 
 – dimensional Euclidean space with norm |∙|. C

	, 0 ,  is the space of continuous function mapping the 
interval 	, 0  into  with the norm ‖∙‖, where ‖ ‖
sup | |, I denotes the identity matrix order, and ∗ 
represents the elements below the main diagonal of a 
symmetric block matrix.  

B. Preliminaries  

Consider neutral system 
 

.											(1) 
 

This study is based on its extension to neutral functional 
integrodifferential system with infinite delays of the form  

    

																				 ,

, ∈ , 0

													(2) 

 
and its control base system 
 

, 	                (3) 
 
where ∈  is the state vector, ∈  is a control 
variable, and the following assumptions: : 	, , and  are 

 constant matrices, :  is an  constant matrix, : 
: ∞	,0 ∞	,0 →  is a continuous matrix  function 

which satisfies ‖ , ‖ , ‖ ‖ for all , ∈ ∞, 0

, where ∞. 
It is assumed that  satisfy enough smoothness conditions 

to ensure that a solution of (2) exists through each , ,
0, is unique, and depends continuously upon ,  and 

can be extended to the right as long as the trajectory remains 
in a bounded set ,∞ . These conditions are given in [4].  
Lemma 1. For any real vector  and  with appropriate 

dimension and any positive scalar , then 
 

 
 
Proof: See [17].  
Lemma 2. The linear matrix inequality 

  

0 

 
is equivalent to 0, 0, 
where ,  and  depend affinely 
on . 
Proof: See [18].    

III. STABILITY OF NEUTRAL SYSTEM WITH INFINITE DELAYS 

Here, a delay-independent criterion for the asymptotic 
stability of (2) in terms of LMI using the standard Lyapunov-
Krasovskii approach will be developed and proved. 
Theorem 1. The neutral functional integrodifferential system 

with infinite delays described by (2) is 
asymptotically stable for all 0 if there exists 
positive symmetric matrices , 0, and some 
positive scalars , , 0 which satisfy the 
following LMI 

 
	, , , ,

		
∗ 		 												 2 2 				 2 2

0 0

	
∗ 				∗
	∗ 					∗		

							 	 2
∗

 

0                                                                                 (4)  
 

where, 
2 , 

 
	 							 							 						 								 								 								 , 

 
diag ,			 ,			 ,			 ,			 ,			 , , 

 
Proof: Let the Lyapunov function candidate be given by 
 

 
 
where, 

	,  and 
 

 

 
Taking the derivative of  along the solution of (2) gives 
 

2 2  
2 , 	.																															(5) 

 

, , 2 2

2 2 , 2 ,

2 , .   (6) 
 

.				                      (7) 
 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:9, 2015

508

 

 

where ,  and  denote ,  and  

respectively. The term , ,  in (6) can 

be simplified using Jensen’s Inequality [19] as follows, 
 

, , ‖ , ‖ ‖ , ‖ 

‖ ‖ ‖ ‖ 

| | | |‖ ‖. ‖ ‖ 

‖ ‖ ‖ ‖  

(8) 
 

Applying Lemma 1 with (8) to the following terms in (5) 
and (6) gives; 
 

2 , 2                  (9) 
 

2 ,  

, , 	 

	                 (10) 
 

2 ,  

, , 	 

 
	                     (11) 

 

2 ,  

, ,  

	                    (12) 
 

where , , 0 are scalars to be chosen. The overall 
derivative of  along the solution of (2) can now be expressed 
as  
 

, , , , , 
 
where   

, , , ,  

2 2 2 2
∗
∗ ∗

, 

 
and , , 	 	 , so that, 
 

2
 

 
 

Pre and most multiplying ∙  by Γ  and Γ; and now using 
the Schur complement gives , , , ,  where  
 

Γ
0 0

0 0
0 0

 

 
It then follows that  is negative definite since  ∙ 0 is 
equivalent  ∙ 0, which implies that  (2) is asymptotically 
stable see [20].  

IV. STABILIZATION OF NEUTRAL SYSTEM WITH INFINITE 

DELAYS RESULT 

Here, a delay - independent stability criterion for the 
stabilization of the closed loop system is developed.  

The interest now is to design a memory-less state feedback 
controller  for (3) as 

 
						                         (13) 

 
where ∈  is a positive-definite matrix to be designated. 

The closed-loop system design for (3), using (13) is defined 
by  

 

,  (14) 
 

The task here is to ensure that (14) is closed-loop 
asymptotically stable. 
Theorem 2. Consider (3) and all its assumptions; if there 

exists positive symmetric matrices , 0, some 
positive scalars ,⋯ , 0 and a positive-
definite symmetric matrix ∈  which satisfy 
the following LMI 

 
, , ,⋯ ,  

		 			
∗ 			 																													 																															

																						0 																												0
∗ 							∗
∗ 							∗																															

																											2
∗ 	

 

0                                                                                       (15) 
 
so that, 
 

2 2 2 2 , 
 

				 				 			 			 			 			 			 , 
 

2 2 2  
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2 2 2  
 

diag , , , , , , , , 
 

	 	 
 
where . Then, (3) is closed–loop asymptotically stable, 
and the input  is a controller for (3). 
Proof: Let the Lyapunov function be given by 
 

 
 

where, 
, ,  

 
and 

, 
 
Taking the derivative of   along the solution of (3) gives 
 

2 2 2

2 ,                                   (16) 
 

 

, , 2   

2 2 2  
2 2 2 ,   

2 , 2 ,   

2 ,                   (17) 
 

                          (18) 
 

Applying Lemma 1 with (8) to the term 
2 ,  in (17) gives; 

 

2 , 2 	            (19) 
 

Using (19) and inequalities (8) – (12), and by replacing the 
constants , ,  by , ,  respectively, the overall 
derivative of  along the solution of (3) can be expressed as 

, , ,⋯ , , where 
, , , ⋯ ,  where  

  
, , , ,  

2 2 2
∗ 2
∗ ∗

, 

 
and , , 	 	 , so that, 

 
2 2 2 2  

 
	  

 
 

 

2 2 2  
 

 
 

Pre and most multiplying ∙  by Γ  and Γ; and now using 
the Schur complement gives , , , ,  where 

  

Γ
0 0

0 0
0 0

 

 

It follows then that  is negative definite since  ∙ 0 is 
equivalent ∙ 0, which implies that (3) is closed-loop 
asymptotically stable see [20]. 
Remark 1. The problems in Theorem 1 and 2 are feasibility 

problems. The solution can be found by solving it in 
the form of a generalized eigenvalue problem, see 
[18] for details. In this paper, the solution was 
found by utilizing the MATLAB’s LMI Control 
Toolbox [21], which implements interior point 
algorithm.  

V.  NUMERICAL EXAMPLES  

Here, numerical examples will be given to illustrate the 
proposed methods 

A. Example 1  

Consider the neutral system with infinite delay given by 
 

	 , (20) 
 
where, 

	0 0.4
0.4 	0

	, 1 0
	0 1

	, 0 1
1 0

, 

	 ,
0

exp 3 	 ∙ 	 

 
Note that, the function ,  satisfies its conditions with,  

 
exp 3 	 ; 

 

exp 3 2⁄ 0.02489. 
 

Now the bound of  for the asymptotic stability for neutral 
systems without infinite delay as given in Example 2 of [8] is 
as follows; [22]: | | 0.2, [23]: | | 0.2, [8]: | | 0.9165, 
This paper (Theorem 1): | | 23700. 

The solutions of the LMI (4) for 23700 are given as 
 

 0.6662, 0.0066, 0.0375, 	1.0006 0
0 	1.0006

 

and 	9.9862 10 0
0 	9.9862 10

 

 
It is observed that Theorem 1 gives a less conservative 

bound of  than all the proposed methods in [8].  

B. Example 2  

Using (20) with the assumption that the systems matrices 
are equivalent to  
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	0.5 0
0 	0.5

	 , 1 0
	0 2

	,	 

 

	 1 0
1 2

, 1 0
0 1

, 

 
where  is as defined in Example 1 above. Solving the LMI 
(15) gives 0.1692, 257.3315, 1.5197, 
	0.1011 0

0 	0.1011
 and 1778 	0

	0 1778
. 

Therefore the stabilizing feedback controller  for (20) is 
 

 
9.8949 0
0 9.8949

 

VI. CONCLUSION 

In this paper, new sufficient conditions are derived for the 
stability and stabilization of neutral systems with infinite 
delays. The new stability conditions were obtained by using 
the Lyapunov stability approach which are then expressed in 
terms of LMI and solved by using the MATLAB’s LMI 
Toolbox. The stabilization of the system was obtained by 
designing a memory-less state feedback control law which is 
presented in terms of LMI and solved by using the 
MATLAB’s LMI Toolbox. Numerical examples were 
provided to demonstrate the effectiveness of the new sufficient 
conditions.  
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