
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

806

Abstract—The enormous amount of information stored on the

web increases from one day to the next, exposing the web currently
faced with the inevitable difficulties of research pertinent information
that users really want. The problem today is not limited to expanding
the size of the information highways, but to design a system for
intelligent search. The vast majority of this information is stored in
relational databases, which in turn represent a backend for managing
RDF data of the semantic web. This problem has motivated us to
write this paper in order to establish an effective approach to support
semantic transformation algorithm for SPARQL queries to SQL
queries, more precisely SPARQL SELECT queries; by adopting this
method, the relational database can be questioned easily with
SPARQL queries maintaining the same performance.

Keywords—RDF, Semantic Web, SPARQL, SPARQL Query
Transformation, SQL.

I. INTRODUCTION

HE Semantic Web is a mesh of information linked up in
such a way as to be easily processable by machines, on a

global scale [1]. This is an efficient way of representing data
on the World Wide Web. It is considered as a gateway to
access the data between different applications and systems.

Semantic annotations of the various heterogeneous
resources on the web are represented in RDF, it’s a standard
Framework to annotate and represent web resources via a
powerful data model. SPARQL is officially recommended by
the W3C as the most representative language of description
for RDF data. This language may initially looks like SQL, but
in reality there are many important differences between
themselves because the data is graph-based so queries match
graph patterns instead SQL’s relational matching operations
[6].

Our motivation to transform SPARQL queries to SQL
queries semantically equivalents is justified by the assurance
of a dynamic access to the relational database by the semantic
web and querying relational database by SPARQL queries. It
facilitates the interoperability of these two heterogeneous
systems without physical transformation of data, which
contributes to achieve the expected purpose of the Semantic
Web namely the improved access to resources interconnected
through the web.

The rest of the paper is organized as follows: Section II
exposes examples of existing approaches in the translation of

N. Soussi and M. Bahaj are with the Departement of Mathematics and

Computer Science, Faculty of Science and Technologies, Hassan 1st
University, LITEN Laboratory, Settat, Morocco (e-mail:
nassima.soussi@gmail.com, mohamedbahaj@gmail.com).

SPARQL queries to SQL queries. Section III presents a
SPARQL grammar as well as detailed description of the
transformation algorithm. Finally, Section IV concludes this
paper with a proposition of the future work.

II. RELATED WORK

In order to ensure a better transformation of SPARQL
queries to SQL queries, several approaches have been made to
guarantee the preservation of semantics.

The authors in [4] create a computable mapping of
SPARQL semantics to SQL semantics by considering only
SPARQL SELECT queries. This mapping is based on the
decomposition of Basic Graph Pattern in a set of triple
patterns conjunctions each of which corresponds to the
attributes of a given relationship in the database. The paper [2]
presents a formalization of relational algebra based semantics
of SPARQL so as to reduce the gap between the Semantic
Web and relational database. Based on this result, they have
established a generic algorithm for semantic translation of
SPARQL to SQL. The authors propose in [5] a translation
algorithm of SPARQL to SQL called IC-based; this
transformation is based on Integrity Constraint. With the
different structure of the tables in the relational databases, the
SPARQL query statements are divided into four types which
each one has its own translations. The work described in [3]
proposes a translation method of SPARQL to SQL that
involves the translation of SPARQL queries to a datalog
program using the mapping R2RML; A relational algebra is
generated from this datalog program in order to design the
SQL query by translating relational operators to the
corresponding SQL operators. The authors in [7] provide a
conversion for SPARQL to SQL described by a converter tool
that receives a SPARQL query which is then parsed using the
parsing function of Jena Framework and analyzed so as to
build a new data structure in order to produce an equivalent
SQL query. Aiming to a seamless integration of SPARQL
queries with SQL queries, the paper [9] proposes a method
that translates a complete SPARQL query into a single SQL
that can be directly used as a sub-query by other SQL queries.
In particular, the authors propose effective schemes to
translate filter expressions into SQL statements.

Our main contribution in this active topic extends RETRO
method [8] which explores one direction i.e. to look at RDF
through Relational lenses. This paper investigates the reverse
direction proposing an efficient and helpful transformation
algorithm for SPARQL SELECT query to semantically
equivalent SQL SELECT query without physically
transforming the data; Our results is obtained by dividing the

N. Soussi, M. Bahaj

A Framework for Semantics Preserving
SPARQL-to-SQL Translation

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

807

SPARQL query to several basics elements (group graph
patterns, basic graph patterns, triple patterns, optional group
graph patterns and union group graph patterns) in order to
carefully analyze and extract its semantic equivalents in SQL.

III. QUERY MAPPING

Before starting the description of transformation algorithm
for SPARQL queries to SQL queries, we illustrate this with
examples through which we describe an abstract grammar for
SPARQL [10] used to build derivation trees of the latter. Then
we describe all procedures of mapping queries algorithm:
ExtractSQLFROMClause, ExtractSQLWHEREClause,
ExtractSQLSELECTClause, QueryMapping.

A. Examples

In the examples treated subsequently, we consider the RDF
dataset illustrated in Fig. 1 with the schema S:
 S = {name(s,o), age(s,o), job(s,o), contry(s,o), website(s,o)}
Table I describes a set of queries using SPARQL and SQL.

TABLE I

QUERIES EXAMPLES USING SQL AND SPARQL

Description SPARQL Query SQL Query
Cross Product
of relations job
and contry

SELECT
?s1 ?o1 ?s2 ?o2
WHERE
{ ?s1 job ?o1
 ?s2 contry ?o2 }

SELECT job.s, job.o,
 contry.s, contry.o
FROM job, contry

Find the
website of bob

SELECT ?o2
WHERE
{ ?s1 name ?o1
 ?s1 website ?o2
 FILTER (?o1 = bob)
}

SELECT website.o
FROM name, website
WHERE name.s = website.s
AND name.o = bob

Names of all
people
with age <30
and
job=teacher

SELECT DISTINCT
?s1 ?o1
WHERE {
 { ?s1 name ?o1
 ?s1 age ?o2
 FILTER (?o2 < 30) }
 { ?s1 name ?o1
 ?s1 job ?o3
 FILTER
 (job = teacher) } }

SELECT name.s, name.o
FROM name, age
WHERE age.o < 30
AND name.s = age.s
INTERSECT
SELECT name.s, name.o
FROM name, job
WHERE job = teacher
AND name.s = job.s

Names of all
people who
either have a
website id or
job = web
programmer

SELECT ?o1
WHERE {
 { ?s1 name ?o1
 ?s1 website ?o2 }
 UNION
 { ?s1 name ?o1
 ?s1 job ?o2
 FILTER (?o2=
webProgrammer) }
}

SELECT name.o
FROM name, website
WHERE name.s = website.s
UNION
SELECT name.o
FROM name, job
WHERE name.s = job.s
AND job.o = webProgrammer

Find people
who work as
teachers and
not web
programmers

SELECT ?s1
WHERE {
{ ?s1 job ?o1
 FILTER (?o1 =
teacher) }
OPTIONAL
{ ?s1 job ?o2
 FILTER
 (?o1 =
webProgrammer) }
}

SELECT job.s
FROM job
WHERE job.o = teacher
EXCEPT
SELECT job.s
FROM job
WHERE job.o =
webProgrammer

(B1, name, paolo) (B2, name, bob)
(B3, name, adamo) (B4, name, gad)
(B1, age, 34) (B2, age, 29)
(B3, age, 41) (B4, age, 36)
(B2, job, teacher) (B3, job, teacher)
(B3, job, webProgrammer) (B4, job, webProgrammer)
(B1, country, USA) (B2, country, England)
(B3, country, France) (B2, country, Canada)
(B2, website, www.bob.com) (B4, website, www.gad.com)

Fig. 1 The RDF Dataset

B. Abstract Grammar for SPARQL

Let GGP, BGP, Var, VarList, VarName, TP and Op denote
group graph pattern, basic graph pattern, variable, variables
list, variable name, triple pattern and operator respectively.

Based on the previous examples we can deduce an abstract
SPARQL grammar as follows:
SELECTQuery → SimpleQuery | FilterQuery | UnionGGPQuery |
SetGGPQuery | OptinalGGPQuery
SimpleQuery → SelectClause 'WHERE{' BGP '}'
FilterQuery → SelectClause 'WHERE{'
 BGP FILTERClause '}'
UnionGGPQuery → SelectClause 'WHERE{' GGP 'UNION' GGP

'}'
SetGGPQuery → SelectClause 'WHERE{' GGP GGP '}'
OptionalGGPQuery → SelectClause 'WHERE{' GGP 'OPTIONAL'

GGP '}'
SelectClause → 'SELECT' VarList
VarList → Var (',' Var)*
Var → '?'Varname
BGP → TP ('.' TP)*
GGP → BGP | BGP FILTERClause
TP → Subject Predicate Object
FILTERClause → 'FILTER' Constraint
Constraint → '(' attribut Op value ')'
Op → '<' | '>' | '=' | '>=' | '<=' | '<>'

C. Transformation Algorithm

Firstly we dissected and analyzed SPARQL queries by
splitting them into two parts: the first part represented by the
SELECT clause, it allows to extract the set of attributes
constituting the SQL query equivalent via the sub-procedure
ExtractSQLSELECTClause, the second part contains the
WHERE clause that allows to extract relations names from
BGP (set of triple patterns) to design the FROM clause of
SQL query using the equivalent sub-procedure
ExtractSQLFROMClause and also joins conditions and
booleans conditions constituting the WHERE clause of the
SQL query equivalent using the sub-procedure
ExtractSQLWHEREClause. All these sub-procedures are used
in the main procedure QueryMapping which takes as input an
SPARQL query so as to return at the end an SQL query
semantically equivalent.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

808

Fig. 2 Our contribution in SPARQL-to-SQL translation

1. ExtractSQLFROMClause Procedure

As regards the procedure ExtractSQLFROMClause, it takes
as input the set of triple patterns, BGP, that glance through by
extracting for each of them its property which represents the
name for the SQL relationship and then add it to the variable
'FROM' initially empty. At the end, this procedure returns the
FROM clause of the SQL query equivalent.

Input: A set of triples patterns, BGP
Output: SQL FROM Clause

 FROM = “” {A SQL FROM Clause initially blank}
 R = ø {A map of relations is initially blank}
 for i ← 1 to BGP.size do
 R.add(BGP[i].predicate)
 FROM += BGP[i].predicate
 if i < BGP.size then
 FROM += “,”
 end if
 end for

Fig. 3 ExtractSQLFROMClause Algorithm

2. ExtractSQLWHEREClause Procedure

The sub-procedure ExtractSQLWHEREClause takes as
input the set of SQL relations, R, the map of triple patterns,
BGP and the FILTER clause constraints, FilterConstraint. This
sub-procedure begins by extracting the joins conditions
(Attribute Op Attribute), JC, glancing through the map BGP
and compare each triple pattern of rank i with the triple pattern
of rank j equivalent to i+1. During this process, the algorithm
examines cases below to add the joints conditions extracted to
the WHERE variable initially empty and separate them with
logical AND operator.
 If the subject of triple pattern i equal to the subject of

triple pattern j then the join condition is written in the
following form:

 R[i].s = R[j].s

 If the subject of triple pattern i equal to the object of triple
pattern j then:

 R[i].s = R[j].o

 If the object of triple pattern i equal to the subject of triple
pattern j then:

 R[i].o = R[j].s

This sub-procedure also allows extracting booleans

conditions (Attribute Op Value) operating on the SPARQL
FILTER clause; we cut the constraint of the FILTER clause to
extract the attribute, operator and value, and define the
attribute type to formulate the boolean condition.

Input: R, BGP, FilterConstraint

 Output: SQL WHERE Clause

 WHERE = “”{A SQL WHERE Clause initially blank}
 JC = ø
 for i ←1 to BGP.size do
 for j ← i+1 to BGP.size do
 if BGP[i].subject = BGP[j].subject then
 jc = R[i] + “.s =” + R[j] + “.s”; JC.add(jc);
 else if BGP[i].subject = BGP[j].object then
 jc = R[i] + “.s =” + R[j] + “.o”; JC.add(jc);
 else if BGP[i].object = BGP[j].subject then
 jc = R[i] + “.o =” + R[j] + “.s”; JC.add(jc);
 end if
 end for
 end for
 for i ← 1 to JC.size do
 WHERE += JC[i]
 if i < JC.size then
 WHERE += “ AND ”
 end if
 end for
 if FilterConstraint.isEmpty() = false do
 if WHERE != “” then
 WHERE += “ AND ”
 end if
 f1 = FilterConstraint.loperand;
 f2 = FilterConstraint.operator;
 f3 = FilterConstraint.roperand;
 tp ← BGP.get(f1) { get the TP of the f1 attribute }
 attrrelation = tp.predicate; attrname = f1.getName()
 if (attrname = “s”) then
 WHERE += attrrelation + “.s” + f2 + f3
 else if (attrname = “o”) then
 WHERE += attrrelation + “.o” + f2 + f3
 end if
 end if

Fig. 4 ExtractSQLWHEREClause Algorithm

3. ExtractSQLSELECTClause Procedure

The sub-procedure ExtractSQLSELECTClause can extract
SQL SELECT clause from the SPARQL SELECT clause; it
glances through the set of variables in the SPARQL SELECT
clause to verify the type of each (subject or object) in order to
conceive its equivalent in SQL language and add it to the
SELECT variable which is initially blank.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

809

Input: SPARQL SELECT Clause V, BGP
Output: SQL SELECT Clause

 SELECT = “”{A SQL SELECT Clause initially blank}
 for i ← 1 to V.size do
 tp←BGP.get(V[i])
 if (V[i].name = “s”) then
 SELECT += tp.predicate + “.s”
 else if (V[i].name = “o”) then
 SELECT += tp.predicate + “.o”
 end if
 if (i<V.size) then
 SELECT += “,”
 end if
 end for

Fig. 5 ExtractSQLSELECTClause Algorithm

 Input: SPARQL query, qin
 Output: SQL query, qout

qout = “”{A SPARQL Query that is initially blank}
tree = parse(qin)
qin

SELECT = tree.getSelectClause()
qout

SELECT = “”
qout

FROM = “”
qout

WHERE = “”
 if tree.type = SimpleQuery then

qin
WHERE = tree.getBGP()

qout
SELECT +=ExtractSQLSELECTClause(qin

SELECT, qin
WHERE)

qout
FROM += ExtractSQLFROMClause(qin

WHERE)
qout

WHERE += ExtractSQLWHEREClause(R, BGP, null) if
qout

WHERE.isEmpty() then
 qout += qout

SELECT + qout
FROM

else
 qout += qout

SELECT + qout
FROM + qout

WHERE
end if

 else if tree.type = FilterQuery then
qin

WHERE_BGP = tree.getBGP()
qin

WHERE_Filter = tree.getFilterClause()
qout

SELECT+=ExtractSQLSELECTClause(qin
SELECT,qin

WHERE_BGP)
qout

FROM += ExtractSQLFROMClause(qin
WHERE_BGP)

qout
WHERE+=ExtractSQLSELECTClause(qin

SELECT, qin
WHERE_BGP,

qin
WHERE_Filter)
qout += qout

SELECT + qout
FROM + qout

WHERE
else if tree.type = UnionGGPQuery then

lGGP = tree.getLeftGGP()
rGGP = tree.getRightGGP()
qin

1 = “SELECT” + qin
SELECT + “WHERE” + lGGP

qin
2 = “SELECT” + qin

SELECT + “WHERE” + rGGP
qout+=QueryMapping(qin

1)+“UNION”+QueryMapping(qin
1)

else if tree.type = SetGGPQuery then
fGGP = tree.getFirstGGP()
sGGP = tree.getSecondGGP()
qin

1 = “SELECT” + qin
SELECT + “WHERE” + fGGP

qin
2 = “SELECT” + qin

SELECT + “WHERE” + sGGP
qout+=QueryMapping(qin

1)+“INTERSECT”+QueryMapping(qin
2)

else if tree.type = OptionalGGPQuery then
lGGP = tree.getLeftGGP()
rGGP = tree.getRightGGP()
qin

1 = “SELECT” + qin
SELECT + “WHERE” + lGGP

qin
2 = “SELECT” + qin

SELECT + “WHERE” + rGGP
qout+=QueryMapping(qin

1)+“EXCEPT” +QueryMapping(qin
2)

end if

Fig. 6 QueryMapping Algorithm

4. QueryMapping Procedure

The main procedure QueryMapping takes as input an
SPARQL query and returns an equivalent SQL query. A
conversion tree of SPARQL query is generated by using the
parse function. If the query type is 'Simple Query' then the
conversion tree generates SPARQL SELECT clause and
WHERE clause that contains only a set of triple patterns BGP;
Then the sub-procedures ExtractSQLSELECTClause and
ExtractSQLFROMClause are called as well as
ExtractSQLWHEREClause with FILTER constraint null so as
to conceive the equivalent SQL query via concatenating the
results of previous functions. We proceed in the same manner
if the SPARQL query type is 'Filter Query' except that the
WHERE clause contains in addition to BGP, the FILTER
clause that leads to the consideration of FILTER constraint in
the sub-procedure ExtractSQLWHEREClause in order to
design the output SQL query. In cases where the type of the
SPARQL query is UnionGGPQuery, SetGGPQuery or
OptionalGGPQuery, the conversion tree generates the
SELECT clause and both GGP encapsulated in the WHERE
clause so as to design with each of them an SPARQL sub-
query that will be used in the recursive procedure
QueryMapping in order to have at the end an SQL query
semantically equivalent.

IV. CONCLUSION

In summary, the main contribution of this paper in the
interoperability between RDF Stores and RDBMS as
discussed above is the elaboration of a translation Framework
for SPARQL SELECT query to SQL query by providing a
direct mapping algorithm that decomposes the SPARQL query
in order to interpret it and deduce its equivalent in the
semantic of SQL language.

One obvious extension of our research regarding SPARQL
to SQL converter will be an improvement of the SPARQL
grammar so as to enhance and reinforce our algorithm to
support more queries types (construct, describe and ask
queries). Another promising direction for future work is to
provide a Framework for SPARQL to XQuery translation in
order to bridge the gap between semantic web and XML
world.

REFERENCES
[1] Http://infomesh.net/2001/swintro/.
[2] A. Chebotko, L. Shiyong, and F. Fotouhi, “Semantics preserving sparql-

to-sql translation”, Data Knowl. Eng, 68(10):973–1000, October 2009.
[3] M. Rodriguez-Muro, M. Rezk, J. Hardi, M. Slusnys, T. Bagosi and D.

Calvanese, “Efficient SPARQL-to-SQL translation using R2RML
Mapping”, KRDB Research Centre, Free University of Bozen-Bolzano,
2013.

[4] E. Prud'hommeaux, and A. Bertails, “A Mapping of SPARQL Onto
Conventional SQL”, World Wide Web Consortium (W3C), 2008.

[5] X. Cui, D. Ouyang, Y. Ye, X. Wang., “Translation of Sparql to SQL
Based on Integrity Constraint”, Journal of Computational Information
Systems 7:2 394-402, 2011.

[6] “A Comprehensive Comparative study of SPARQL and SQL”, Vipin
Kumar. N, Archana P. Kumar, Kumar Abhishek. (IJCSIT) International
Journal of Computer Science and Information Technologies, Vol. 2 (4),
2011, 1706-1710.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:3, 2015

810

[7] K. Bajda-Pawlikowski, “Querying RDF data stored in DBMS: SPARQL
to SQL Conversion”, Technical Report TR-1409, Yale Computer
Science Department, USA.

[8] J. Rachapalli, V. Khadilkar, M. Kantarcioglu, and B. Thuraisingham,
“RETRO: A Framework for Semantics Preserving SQL-to-SPARQL
Translation”, The University of Texas at Dallas, 800 West Campbell
Road, Richardson, TX 75080-3021, USA, 2009.

[9] J. Lu, F. Cao, L. Ma, Y. Yu, and Y. Pan, “An Effective SPARQL
Support over Relational Databases”, Semantic Web Ontologies and
Databases, pp 57-76, 2007.

[10] http://www.w3.org/TR/rdf-sparql-query/#sparqlGrammar.

N. Soussi was born in 1991, in Khouribga, Morocco. She got her special
higher studies degree in software engineering from National School of
Applied Sciences in 2014. She is now a Phd student in the Department of
Mathematics and computer sciences, Faculty of Sciences & Technology of
Settat, Hassan 1st University, Settat, Morocco. Her area of interest includes
web ontologies and semantic web.

M. Bahaj was born in 1964, in Ouezzane, Morocco. He got his PhD in
Applied Mathematics, from University of Pau, France, in 1993. He is now a
full Professor in Department of Mathematics and Computer Sciences from the
University Hassan 1st Faculty of Sciences & Technology Settat Morocco. He
is co-chairs of International Conference on Software Engineering, Databases
and Expert Systems (SEDEXS’12), NASCASE’11. He has published over 60
peer-reviewed papers. His research interests are intelligent systems,
Ontologies Engineering, Partial and differential equations, Numerical
Analysis and scientific computing.

