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 
Abstract—The lifetime of a wireless sensor network can be 

effectively increased by using scheduling operations. Once the 
sensors are randomly deployed, the task at hand is to find the largest 
number of disjoint sets of sensors such that every sensor set provides 
complete coverage of the target area. At any instant, only one of these 
disjoint sets is switched on, while all other are switched off. This 
paper proposes a heuristic search method to find the maximum 
number of disjoint sets that completely cover the region. A 
population of randomly initialized members is made to explore the 
solution space. A set of heuristics has been applied to guide the 
members to a possible solution in their neighborhood. The heuristics 
escalate the convergence of the algorithm. The best solution explored 
by the population is recorded and is continuously updated. The 
proposed algorithm has been tested for applications which require 
sensing of multiple target points, referred to as point coverage 
applications. Results show that the proposed algorithm outclasses the 
existing algorithms. It always finds the optimum solution, and that 
too by making fewer number of fitness function evaluations than the 
existing approaches. 
 

Keywords—Coverage, disjoint sets, heuristic, lifetime, 
scheduling, wireless sensor networks, WSN. 

I. INTRODUCTION 

 Wireless Sensor Network (WSN) consists of a large 
number of densely deployed sensors which work 

collectively to provide information about the target field. The 
applications of wireless sensor networks include monitoring 
the battlefields, exploring the deep oceans, tracking the 
animals in their natural habitats etc. [1]-[8]. Most of these 
applications require the sensor nodes to be placed in hostile 
environments, making the replacement of their batteries 
difficult or practically impossible. The lifetime of a WSN with 
limited energy resources can be increased if these resources 
are used in a controlled and intelligent way. This is an 
important topic of research [1], [2], [8]-[11].  

The first step in setting up of a WSN is the deployment of 
sensor nodes. Many methods [12]-[17] have been proposed to 
deploy the sensors in a planned manner in order to achieve 
complete coverage of the monitored area with minimum 
number of sensors. It has also been proposed to dispatch a set 
of mobile sensor nodes to satisfy the coverage and 
connectivity requirements [7], [16], [18], [19]. For 
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applications where the area to be monitored is too large or 
where the batteries of the sensor nodes cannot be replaced, 
random deployment is the preferred choice. It is achieved by 
spreading the sensors randomly all over the monitored area 
[9], [10], [20]. In random deployment, the number of sensors 
required to achieve complete coverage is more than the 
planned methods. As the technological advancements have 
considerably reduced the cost of sensor nodes [1], [8], [10], 
random deployment has become economically feasible. 
Practically, the number of sensor nodes deployed is much 
more than the number required for achieving complete 
coverage. This adds redundancy. Redundant deployment helps 
in prolonging the lifetime of a WSN. Many methods [21]-[29] 
have been proposed to intelligently use this redundancy for 
setting up of energy efficient wireless sensor networks. 
Redundant deployment also allows identification of redundant 
backbones for data communication tasks and helps setting up 
of minimum k-connected, m-dominating set wireless sensor 
networks [30]. 

With redundant deployment, more sensors than one monitor 
any portion of the area under surveillance. This implies that 
the region can be monitored by switching on any one of them 
and switching off the rest. Thus only a subset of the deployed 
sensors needs to be active to completely monitor any area [8]-
[11], [31]-[35] at a time. Therefore, the sensors are divided 
into disjoint sets, each providing a complete coverage of the 
monitored area. Many methods [2], [8]-[11], [31], [34]-[45] 
have been proposed to divide the sensors into such mutually 
exclusive sets. Instead of using any one subset till its energy 
exhausts and then switching on to the other, it is better to use 
them in a cyclic manner in order to increase the lifetime of the 
wireless sensor network. This follows from the fact that the 
battery life doubles, if it is used in short bursts separated by 
significant off time than in a continuous mode of operation 
[46]. Using various disjoint sets one after the other in a cyclic 
manner is referred to as scheduling. For maximizing the 
lifetime of a WSN, scheduling requires that the sensors be 
divided into the maximum number of sets subject to the 
condition that each of these sets provides complete coverage 
of the target area. 

Many methods [9], [10], [31], [47] have been proposed for 
scheduling of sensors in a WSN. Cardie and Du [10] proposed 
a “maximum covers using mixed integer programming (MC-
MIP)” algorithm. It is based on a branch and bound method to 
make an implicit exhaustive search and guarantees to find an 
optimal solution to the problem. However, the execution time 
of MC-MIP increases exponentially as the number of sensors 
and targets becomes larger [9]. Another heuristic, named 
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“most constrained minimally constraining covering 
(MCMCC)” heuristic has been proposed by [31]. It uses a 
greedy deterministic approach. Hu et al. [9] suggest that it 
works much faster than MC-MIP for large scale problems, but 
it does not guarantee to find an optimum solution. 

Genetic algorithms (GAs) [48] are population based search 
algorithms that simulate biological evolution process and have 
successfully been used to solve a wide range of NP-hard 
optimization problems [49]-[53]. Lai et al. [47] proposed a GA 
named “genetic algorithm for maximum disjoint set covers 
(GAMDSC)”. It encodes each gene in the chromosome as an 
integer index of the set that the sensor has joined. GAMDSC 
is suitable only when the number of targets and sensors is 
small. Hu et al. [9] proposed a “schedule transition hybrid 
genetic algorithm (STHGA)” that uses a combination of 
genetic algorithm and schedule transition operations to address 
the problem of finding the largest number of disjoint complete 
sets. STHGA starts by placing all the sensors in a single set so 
that it is definitely a complete set. It then uses a forward 
encoding scheme to move the redundant sensors of the first set 
to the second set. STHGA clubs forward encoding with 
genetic algorithm and sensor schedule transition operations to 
complete the second set. It then moves the redundant sensors 
of these two sets to the third set. The process continues until 
the maximum number of disjoint complete cover sets has been 
created. Hu et al. [9] have compared the performance of 
STHGA with GAMDSC and MCMCC. It has been 
highlighted that STHGA always achieves the desired results 
whereas GAMDSC and MCMCC do not always do so. 
STHGA has also been reported to be faster than the other two. 
The number of fitness function evaluations made by STHGA 
is always considerably less than GAMDSC. 

In this paper, a heuristic search algorithm (HSA) is 
proposed to solve the disjoint set covers problem for 
maximizing the lifetime of a wireless sensor network. The 
algorithm uses a group of members to explore the entire 
search space in order to find an optimum solution. An 
optimum solution is the one which divides the sensors into 
maximum number of disjoint complete cover sets. The number 
of dimensions of the search space is equal to the number of 
sensors deployed. Each dimension in the search space 
corresponds to a sensor and its value indicates the set in which 
the sensor is scheduled to be switched on. Thus each 
dimension of a member can have an integer value in the range 
from 1 to the maximum number of possible disjoint complete 
sets (determined by the number of sensors covering a critical 
field as discussed later). 

The HSA starts by randomly initializing all the members. 
Then the coverage of all the cover sets in each of the members 
is evaluated. This is followed by fitness function evaluation of 
each member. The fitness function has been designed to give 
more weight to the complete sets so that a member having 
more number of complete sets MUST have higher fitness. 
Then three moves are applied heuristically one after the other. 
These moves have been designed to move the redundant 
sensors from one set to another. The selection of sensors for 
movement and the determination of new sets is done randomly 

to explore the entire space. The directed moves aim at 
improving the convergence of the algorithm. The performance 
of the proposed HSA has been compared with STHGA [9]. 
Results show that HSA always finds the optimum solution like 
STHGA, but at a much faster optimization speed.  

II. PROBLEM DEFINITION 

Let N sensors be randomly deployed in a rectangular region 
A×B (Fig. 1). Each sensor is assumed to have a circular 
coverage area with radius R. Each sensor has a finite lifetime. 
The aim is to maximize the time for which the area is 
monitored. Let the number of sensors deployed be too large 
than the number of sensors required to achieve complete 
coverage of the area. Thus only a subset of the sensors 
deployed can provide complete coverage. 

 

 

Fig. 1 N sensors with circular coverage deployed in A × B 
rectangular area 

 
If the deployed sensors are represented by a set S = {s1, s2, 

……, sN}, and the maximum number of disjoint sets that can be 
created by β, the objective is to find the maximum number of 
subsets Sk, k = 1, 2, …, β, of S so that each subset provides 
complete coverage of the target area. Further, Sk ∩ Sl = ø ; k ≠ 
l and k, l = 1, 2, …., β. 

Once the sensors are divided into subsets Sk, k = 1, 2, …., β, 
as per the criteria given above, sensors in only one of the 
subsets shall be activated at any instant of time. After some 
time that subset of sensors shall be switched off and another 
subset shall be switched on. Thus sensors in a sensor subset Sk 
shall be activated in the kth schedule. 

In the illustration of Fig. 1, each sensor si has been assumed 
to have a circular coverage area of radius R. In practice, 
however, the sensor coverage area can be of any shape. In this 
work, for simplicity the coverage area has been assumed to be 
circular. 

Field: Referring to Figs. 1 and 2 it can be observed that the 
areas covered by sensors overlap each other, forming separate 
fields [32]. A field can thus be defined as the area that is 
covered by the same set of sensors e.g. in Fig. 2 three sensors 
combine together to form seven fields. 
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TABLE I  
NOTATIONS 

sk Sensor k 

fi Fitness value of member i, i = 1, 2, …, M 

fbest Fitness value of the best member 
A Width of the target area 

B Length of the target area 

N Number of sensors 
R Sensing range of each sensor 

M Number of members in a population 

K1 Number of sensors selected during the redundant move 

K2 Number of sensors selected during the completion move 

NF Total number of fields in the region that are to be covered 

NCF 
Number of critical fields i.e. the number of fields that are 

covered by β sensors 
MAXt Maximum number of iterations 

Ci Number of complete sets in member i, i = 1, 2, …, M 

Cbest Number of complete sets in the best member 

Vi,y Coverage percentage of yth incomplete set in member i 

I(i,j) 
i = 1,2,…,M 
j=1,2,…,N 

Gives the location of the ith member in the N dimensional 
search space. Each dimension represents a sensor and its 
value (in the range 1 to β) indicates the set in which the 

sensor is scheduled to be switched on 
S Set of sensors deployed in the target area 

Sk 
k = 1, 2, …, β 

Subset of S 

β Number of sensors covering a critical field 

 

 

Fig. 2 Circular coverage areas of 3 sensors combine together to form 
7 fields 

 
Critical Field: A field that is covered by the minimum 

number of sensors is referred to as the critical field and the 
sensors covering that critical field are called critical sensors. 

If a critical field is covered by β sensors, then at least one of 
these β sensors must be active at any instant of time to provide 
complete coverage of the target area. Thus we can have at 
most β number of disjoint sets of sensors which provide 
complete coverage to the target area. 

Let N sensors combine together to form NF fields. Let Fk, 
k=1, 2, …, NF represent the number of sensors that cover the 
kth field, then 

 
β = min. {Fk; k = 1, 2, ……, NF}             (1) 

 
In Fig. 2 the values of F1, F2, …, F7 respectively are 1, 2, 3, 

2, 1, 2 and 1. Thus the value of β is 1. 

III.  PROPOSED DIRECTED RANDOM SEARCH ALGORITHM 

The algorithm being proposed in this paper solves the 
problem at hand by using random search clubbed with some 
directive moves. A complete flow chart of the proposed 
algorithm is shown in Fig. 3. The algorithm uses M members 
to explore an N-dimensional space, where N is the number of 
sensors deployed. In this section, first the representation and 
initialization of the members is discussed, followed by the 
calculation of coverage percentage of a set, evaluation of the 
population and the directive moves.  

A. Representation of Members 

The initial population comprises of M members, each 
having N dimensions. Each member is a candidate solution for 
the problem. Every dimension of a member corresponds to a 
sensor. A member is represented as: 

 
I(i) = [αi1, αi2, …, αIn]

T  ; (i = 1, 2, …, M)  (2) 
 

where αij ϵ {1, 2, …, β }; i = 1, 2, …, M; j = 1, 2, …, N. The 
value αij indicates the set or the schedule in which the jth 
sensor shall be switched on in member i. Thus each member 
divides the N sensors into β disjoint sets.  

B. Initialization 

As the critical field is covered by β sensors, the sensors may 
at the most be divided into β disjoint sets so that each of the 
sets completely covers all the fields. The algorithm starts by 
randomly placing the sensors in a member into any of the β 
sets as: 

 
I(i,j) = roundoff (1 + (β - 1) × uniran() ) ;     

 (i = 1, 2, …, M ; j = 1, 2, …, N)      (3) 
 

uniran() is a function which returns a uniform random number 
in the range [0-1]. Thus, the sensors are divided into β disjoint 
sets.  

C. Fitness Evaluation 

The percentage coverage of each of the sets is to be 
evaluated which in turn requires the calculation of the 
percentage coverage of each sensor. As the determination of 
exact percentage coverage of the sensors is difficult, an 
approximation is made by dividing the area into grids [9]. A  
set having hundred percent coverage is termed as a complete 
set. The aim of the algorithm is to make all the sets complete 
i.e. to divide the sensors into β disjoint complete cover sets.  

The fitness of the ith member in the population is evaluated 
as 

 

௜݂ ൌ ௜ܥ ൅ ∑ ൫0.1 ൈ ௜ܸ,௬൯
ሺఉି஼೔ሻ
௬ୀଵ        (4) 

 
where ܥ௜ is the number of complete sets in member i, (β-Ci) 
the number of incomplete sets in member i, and ௜ܸ,௬ the 
coverage percentage of the yth incomplete set in member i.  
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Fig. 3 Flowchart of the proposed HAS 

D. Directive Moves 

1) Redundant Move 

The fields are covered by multiple sensors. More than one 
sensor covering a field may have been scheduled in one set. 
All but one of these sensors are redundant as removing them 
from the set will not change the percentage coverage of the 
set. The purpose of this move is to change the schedule of 
such redundant sensors. In every iteration, the move is made 
K1 times for every member as: Randomly select a sensor. If 
the selected sensor is redundant to its current set, randomly 
reschedule it to any of the other sets. 

The move makes K1 efforts to reschedule the sensors. But 
this does not imply that K1 sensors are rescheduled for every 
member in each of the iterations. The sensor may be 
rescheduled if and only if it is redundant to its current 
schedule. A pseudo-code for the redundant move is given in 
Fig. 4. 

 

 

Fig. 4 Pseudo-code for redundant move 

2) Completion Move 

The completion move aims at improving the coverage 
percentage of incomplete sets to make them complete. It 
moves the redundant sensors from the complete sets to the 
incomplete sets. This move is also performed K2 times for 
every member in each iteration. The procedure for this move 
is explained below and a pseudo-code for the same is given in 
Fig. 5. 

Randomly select a sensor. If the sensor belongs to a 
complete set, check whether it is redundant to its current set. If 
yes, reschedule it to a randomly selected incomplete set. 

 

 

Fig. 5 Pseudo-code for completion move 
 
 Like in the redundant move, performing the completion 

move K2 times does not mean that K2 sensors will be 
displaced. Probability (the sensor will be rescheduled) = 
Probability ((the randomly selected sensor belongs to a 
complete set) and (the selected sensor is redundant to its 
current set)). 

3) Critical Move  

The upper limit on the number of disjoint complete sets is 
fixed by the number of sensors covering the critical fields. In 
order to classify the sensors into the maximum number of 
disjoint complete sets, the sensors covering the critical fields 
must be placed in different sets. In other words, no set can be 
complete if it does not contain a sensor for each of the critical 

FOR (k = 1, 2, …, K2) 
     j = roundoff (1 + (N - 1) × uniran() ) 
    T = I(i,j)           
    IF (the sensors of set T provide complete coverage) 
        IF (j is redundant to the set T) 
            x = roundoff (1 + ((β – Ci) - 1) × uniran() ) 

/*  (β – Ci) → number of incomplete sets in member 
i */ 

            Tnew = schedule of the xth incomplete set 
            I(i,j) = Tnew 

        END IF 
    END IF 
END FOR 

FOR (k = 1, 2, …, K1) 
     j = roundoff (1 + (N - 1) × uniran() ) 
    T = I(i,j)           
    IF (j is redundant to the set T) 
        Tnew = roundoff (1 + (β - 1) × uniran() ) 
        I(i,j) = Tnew 

    END IF 
END FOR
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fields. This move tries to displace the multiple critical sensors 
scheduled in a common set to those incomplete sets which do 
not cover the corresponding critical field. The critical move is 
performed for all the incomplete sets of every member in each 
iteration as given below: 

For each critical field, check whether it has been covered in 
the incomplete set. If not, randomly select a sensor from 
among the sensors covering that critical field. Check whether 
the selected sensor is redundant to its current set. If yes, 
reschedule it to the current incomplete set. 

Fig. 6 presents the pseudo-code for the critical move. 
 

 

Fig. 6 Pseudo-code for critical move 
 
After performing the heuristics, the fitness of the new 

population is evaluated using the fitness function given by (4). 
The best-so-far member is then updated. The HSA terminates 
either when β disjoint complete cover sets are found or when 
the predefined maximum number of iterations is reached. If 
none of the termination conditions is met, the HSA again starts 
with the redundant move for the new population and the 
process is repeated. 

With M members in the population, the number of coverage 
evaluations as well as the fitness function evaluations made 
during initialization is M. Further, in every iteration, coverage 
evaluation is made three times for every member and the 
fitness function evaluation is done once for every member. 
Thus for t iterations, the number of coverage evaluations made 
shall be ܯሺ1 ൅  ሻ and the number of fitness functionݐ3
evaluations shall be ܯሺ1 ൅  .ሻݐ

IV. RESULTS AND DISCUSSION 

The proposed HSA has been tested with different sensor 
deployments for point coverage problems. The performance of 
the HSA has been compared with STHGA [9]. This section 
presents the analysis and discussion of the results. 

The population size for all the experiments has been fixed at 
M = 5. The parameters K1 and K2 used in the heuristics are set 
as K1 = K2 = (N / 3) where N is the number of sensors 
deployed. These parameters have been set empirically. Each 

case been tested 100 times for the HSA. The parameter 
settings and other details regarding STHGA can be referred in 
[9]. The monitored area is a 50 × 50 unit square. The sensor 
node location coordinates have been randomly generated as 
float point values in [1], [51]. All the simulations have been 
carried out on a computer having Intel® Core™ i3 CPU 
@2.4GHz with 4GB RAM. 

Experiments have been conducted for different cases with 
different numbers N of the sensors deployed. The number of 
targets and the sensing range R of the sensors has been fixed at 
10 and 22 respectively. Table II tabulates the results computed 
by HSA and compares it with the results for STHGA 
documented by Hu et al. [9]. To facilitate the comparison, the 
results for the same values of N, R and β have been presented 
as [9]. Both STHGA and HSA create the maximum number of 
disjoint sets in all the cases. Similar to STHGA [9], HSA also 
finds the optima in all the 100 independent runs for each case. 
The results listed in the table are the mean values. However, 
HSA reaches the optima much faster than STHGA in all the 
cases. This is reflected by the considerably smaller average 
number of fitness function evaluations made by HSA in 
comparison with STHGA for all the seven cases. Fig. 7 
graphically shows the variation in number of fitness function 
evaluations by both STHGA and HSA for the seven cases 
listed in Table II. It can be noted that both STHGA and HSA 
show similar variation trends. However, the number of fitness 
evaluations for HSA is smaller than STHGA in all the cases. 

 

 

Fig. 7 Comparison of number of fitness function evaluations for 
STHGA and HSA 
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FOR (k = 1, 2, …, (β – Ci))  /* for every incomplete set in 
member I */ 

    T = schedule of the kth incomplete set 
    FOR (l = 1, 2, …, NCF) ;  /* for every critical field */ 
        IF(the lth critical field is not covered in schedule T) 
            Randomly select a sensor j from among the sensors 

covering the lth critical field 
            IF(sensor j is redundant to its current schedule in the 

member i) 
                I(i,j) = T    /* reschedule the sensor j to the complete 

set T} */ 
            END IF 
        END IF 
    END FOR 
END FOR 
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TABLE II  
TEST RESULTS FOR POINT COVERAGE WITH DIFFERENT VALUES OF N 

Cases STHGA HSA 

Sr. N R β Nsets@ avgFE* β Nsets@ Number of Iterations avgFE* avgCE** 

1 90 22 30 30 596 30 30 13.77 73.83 211.50 

2 100 22 23 23 214 23 23 6.07 35.33 96.00 

3 110 22 21 21 156 21 21 3.90 24.50 63.50 

4 120 22 35 35 422 35 35 8.67 48.33 135.00 

5 130 22 41 41 1856 41 41 61.80 314.00 932.00 

6 140 22 44 44 3568 44 44 115.97 584.83 1744.50 

7 150 22 42 42 532 42 42 17.67 93.33 270.00 

* avgFE = average of number of fitness function evaluations 
** avgCE = average of number of coverage evaluations 
@ Nsets = Average of number of disjoint complete sets created 

 
V. CONCLUSIONS AND FUTURE SCOPE 

In this paper a directed random search algorithm has been 
presented to find the maximum number of disjoint complete 
cover sets of sensors for point coverage in order to maximize 
the lifetime of a WSN. HSA uses a population to explore the 
entire solution space in search of the optimum solution. The 
members are initially randomly scattered all over the search 
space. Each member explores the search space in its 
neighborhood and reports the best position acquired by it. 
Keeping in view, the requirements of the application for which 
the search algorithm is designed, a set of heuristics has been 
introduced. These heuristics speed up the convergence of the 
algorithm towards the optima. The proposed algorithm 
achieves high quality solutions at fast optimization speeds and 
outperforms the STHGA which has been proven to be the 
most suitable algorithm for this problem [9]. 

The results show that HSA always finds the optima and that 
too at a high pace. Further research needs to be carried out to 
analyze the effect of variation in the population size and the 
number of times the redundant and completion moves are 
made. Also the suitability of HSA to increase the lifetime of 
WSNs in area coverage problems needs to be explored. 
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