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Abstract—This paper describes a new approach which can be 

used to interpret the experimental creep deformation data obtained 

from miniaturized thin plate bending specimen test to the 

corresponding uniaxial data based on an inversed application of the 

reference stress method. The geometry of the thin plate is fully 

defined by the span of the support, l, the width, b, and the thickness, 

d. Firstly, analytical solutions for the steady-state, load-line creep 

deformation rate of the thin plates for a Norton’s power law under 

plane stress (b→0) and plane strain (b→∞) conditions were obtained, 

from which it can be seen that the load-line deformation rate of the 

thin plate under plane-stress conditions is much higher than that 

under the plane-strain conditions. Since analytical solution is not 

available for the plates with random b-values, finite element (FE) 

analyses are used to obtain the solutions. Based on the FE results 

obtained for various b/l ratios and creep exponent, n, as well as the 

analytical solutions under plane stress and plane strain conditions, an 

approximate, numerical solutions for the deformation rate are 

obtained by curve fitting. Using these solutions, a reference stress 

method is utilised to establish the conversion relationships between 

the applied load and the equivalent uniaxial stress and between the 

creep deformations of thin plate and the equivalent uniaxial creep 

strains. Finally, the accuracy of the empirical solution was assessed 

by using a set of “theoretical” experimental data.  
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I. INTRODUCTION 

OWER plants and chemical plants may operate at elevated 

temperatures for extended periods of time, e.g. more than 

30 years. During this time, the material used in the 

construction of the plants degrades and the creep strength of 

the material reduces. NDT and small specimen test techniques 

can be employed to sample and test the material. For this 

reason, various small or miniature specimen test methods have 

been developed and used [1]. The latest work on small 

specimen creep testing involves the development of specimen 

types which are suitable for obtaining creep strain rate and 

creep rupture data [2]. The small test specimens used for these 

types of tests can be obtained from small button-shaped 

(scoop) samples, which are removed, for example, by a non-

destructive sampling technique [3].  
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Small specimen creep testing has become increasingly 

attractive for power plant applications because some power 

plant components are now operating beyond their original 

design life, and economic, “non-invasive” and reliable testing 

techniques are required when performing remaining life 

evaluations [3]. Data from small volumes of materials have a 

direct input into remaining life and ranking studies, thereby 

improving the confidence of plant/component life prediction 

and managing the potential risk [4]. Such data can also be 

used to generate creep constitutive laws for weld materials and 

for local heated-affected zone structures generated during the 

welding process [5].  

The main small specimen types that are used to obtain creep 

properties include the conventional sub-size uniaxial 

specimens [6] and several specialised miniature specimen 

types including: the impression specimen [7], [8], Fig. 1 (a), 

the small punch specimen [9], [10], Fig. 1 (b), the small ring 

specimen [11], [12], Fig. 1 (c), and the small tensile bar 

specimen [13], Fig. 1 (d). One of the unique advantages the 

small punch creep test has is that one of the specimen 

dimensions (the thickness) is very small (0.3 to 0.5mm), 

however, up to date, there are no universally accepted 

conversion techniques available for data interpretation, due to 

its complicated deformation and failure mechanisms [10]. 

Previous research has been carried out using miniaturised 

beam on pure bending specimen type [14]. This paper 

describes a technique which can be used to interpret the 

experimental creep deformation data obtained from 

miniaturized thin plate bending specimen test to the 

corresponding uniaxial data based on an inversed application 

of the reference stress method. 

 

 

Fig. 1 Small creep test specimens: (a) Impression; (b) Small punch; 

(c) Small ring; and (d) Small bar type 
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II. ANALYTICAL SOLUTIONS FOR STEADY-STATE CREEP 

DEFORMATION RATES 

A. Norton’s Law 

Norton’s Law is the most common material behaviour 

model to describe the steady-state creep of bulk deformation 

behaviour. The multi-axial form of the Norton’s law is given 

by: 

 

����� = ����	           (1) 

 

where B is the creep resistant coefficient and n is the stress 

index. The individual components of the creep strain rates are 

given by: 
 

��
�� = �

����	 ��������         (2) 

 

The uniaxial form of the Norton’s law is: 

 

��� = ��	          (3) 

B. Analytical Solutions under Plane Stress Conditions  

A thin rectangular plate with simple supports subjected to a 

vertical force P in the middle is illustrated in Fig. 2. Since the 

plate is thin, the effect of the shear stress contribution and the 

stress in the thickness direction are assumed to be negligible. 

Under the plane stress conditions, the plate is treated as a 

beam under pure bending, where the stress state of the plate is 

uniaxial. Detailed derivation procedure using a 

complementary strain energy approach can be seen in 

Appendix A. The load line direction steady-state creep 

deformation rate of the thin plate under the plane stress 

conditions is: 

 

����� = �
	��
	 �	 �

�	�
� ∙ �

 
! ∙ � � "�

#! �
	
      (4) 

 

 

Fig. 2 Schematics of the three-point bending model (plane stress) 

C. Analytical Solutions under Plane Strain Conditions 

As shown in Fig. 3, a thin plate with simple supports is 

subjected to a vertical line force $̅ in the middle. Since the 

thickness of the plate is small compared to its length and 

width, the stress in z direction is assumed to be negligible 

(�& = 0). Therefore, under the plane strain condition (�( = 0), 
the stress state in the plate is bi-axial. The load line direction 

steady-state creep deformation rate of the thin plate under the 

plane strain (b→∞) conditions is: 
 

����� = �
	��
	 �	 �

�	�
� ∙ �)

*+,
 � 

! ∙ � �-̅�! �
	
     (5)  

 

Detailed derivation procedure can be seen in Appendix B. 

 

 

Fig. 3 Schematics of the three point bending model 

III. APPROXIMATE, EMPIRICAL SOLUTION FOR STEADY-

STATE CREEP DEFORMATION RATES 

A. Finite Element Analysis 

Finite element analyses for the thin plate under three-point 

bending were performed to verify the 2D analytical solutions, 

and to produce the numerical results for steady-state 

deformation rate for various b/l ratios between the plane stress 

and plane strain. Under a given support condition, the load-

line direction steady-state creep deformation rate of the plate 

is related to the Norton’s constants, B and n, and the plate 

geometry, i.e. d/l and b/l, see Fig. 3. It is assumed that when 

d/l is sufficiently small, the shear contribution is negligible, 

therefore, the deformation solution will be very close to that of 

pure bending, where the dimension can be characterised by b/l 

only. In all FE analyses, d = 1.6 and l = 20 mm are used here 

although other values of the dimensions can also be used.  

B. 2D Plane Stress and Plane Strain Analyses 

The variations of load-line creep deformation rate with time 

under plane stress and plane strain conditions, obtained from 

2D FE analyses are shown in Fig. 4. The analyses were 

performed using plane stress and plane stress elements, with B 

= 1.0×10
-22

 (for stress in MPa and time in hour), n = 6, and $̅	= 

25 N/m. The results are normalised by the analytical plane 

strain solutions by using (5) and the t is normalised by /0 
which is the time when “steady-state” is achieved in the FE 

analysis.	
Due to the stress re-distribution in the early stage of creep, 

the creep deformation rates reduce with time, and become 

practically un-changed with time (steady-state) when the time 

is sufficiently long. These “constant” steady-state values of the 

FE solution are compared with the corresponding analytical 

solutions from (4) and (5) in Fig. 4.  

It can be seen that the steady-state FE solutions are almost 

identical to the corresponding analytical solutions. In addition, 

it clearly shows that the deformation rate under plane-stress 

condition is almost three times of that under plane-strain 

conditions for n = 6. Since the analytical solutions cannot be 

obtained for random b/l values, 3D FE analyses are used to 

produce approximate, numerical solutions for these. 

b 

P 

l 
P/2 P/2 

d 

Δ, Δ�  

x 

z y 

l 

d 

 

 

b 

$̅ 



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:9, No:7, 2015

1300

 

 

 

Fig. 4 Comparison of analytical and FE creep deformation rates 

under plane stress and plane strain conditions (B = 1.0×10-22, n = 6, 

and $̅	= 25 N/m. l = 20 mm and d = 1.6 mm) 

C. 3D Results for a Range of n and b/l 

To evaluate the deformation rate under 3D conditions, FE 

analyses were performed subjected to a constant line load of $̅ 

= 25 N/m, with b/l varying from 0.25 to 5. In all cases, l = 

20mm and d = 1.6mm were used. The normalised results for B 

= 1.0×10
-22

 and n = 6 are plotted in Fig. 5. 

It can be seen from Fig. 5 that the steady-state creep 

deformation rate reduce with the increase of the b/l ratio, and 

this reduction become less significant as the b/l ratio becomes 

larger. When b/l is less than ~ 0.1 (the plate can be regarded as 

a thin beam), the FE results are very close to that for plane 

stress, and when b/l is great than ~ 2.5, the results are very 

close to that for plane-strain. Since the variation with b/l is 

relatively simple, curve or surface fitting is assumed to be 

reasonable to be used to derive an empirical solution of the 

load-line steady-state deformation rate as a function of b/l and 

n. 

 

 

Fig. 5 Variation of normalised steady-state deformation rates with b/l 

obtained from FE analyses (n = 6) 

 

The analyses similar to those shown in Fig. 5 were 

conducted with other n-values varying from 2 to 10. The 

results obtained are shown in Fig. 6, from which it can be seen 

that a relatively smooth surface was obtained. 
 

 

Fig. 6 Surface fitting to the normalised steady-state creep 

deformation rate plot with b/l and n 

D. Fitting Functions between Plane Stress and Plane Strain 

In order to obtain a suitable b/l and n dependent function by 

fitting the 3D FE results, for the same n-value, the FE steady-

state creep deformation rate results are normalised by the 

corresponding result for plane strain. The function of the 

surface is found to be hard to be expressed by a single 

polynomial function. In order to reduce the error, the 

numerical empirical solutions of the surface are determined 

separately with respect to different b/l regions, see (6)-(9). 

For 0.25 < b/l < 0.45: 
 

2 �#� , 4� = 	1.469	 − 2.237�#�� − 0.264 + 4.846 �#��

 − 0.64554 �#�� 	−

0.00022554
 	− 3.4814 �#��
� + 	0.48114 �#��


 	− 0.0010684
 	�#��   (6) 

 

For 0.45 < b/l < 0.75: 

 

2 �#� , 4� = 	1.293 − 0.4461�#�� + 0.20934	 + 	0.2646�#��

 	− 0.50174�#�� +

0.0028464
 + 0.31644 �#��

 + 0.0029154
 	�#�� − 0.00030994�  (7) 

 

For 0.75 < b/l < 1.3: 

 

2 �#� , 4� = 	1.273 − 0.3392�#�� + 0.09894	 + 	0.135�#��

 	− 0.14424�#�� +

0.0031964
 + 0.049334 �#��

 + 0.00094574
 	�#�� − 0.00026054�	 (8)  

 

For 1.3 < b/l < 2: 
 

 2 �#� , 4� = 	1.202 − 0.1948 �#�� + 0.044454 + 0.05156�#��

 − 0.014614 �#��	−

0.00050724
       (9) 
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TABLE I 

ACCURACY OF THE FITTING FUNCTION (6)-(9) FROM TYPICAL CASES 

n b/l FE (6)-(9) Errors (%) 

3 1.6 1.086731 1.078 0.790 

5 0.3 1.671243 1.643 0.681 

9 0.7 1.426226 1.402 1.719 

 
TABLE II 

CONVERSION FACTORS FOR DIFFERENT STRESS CONDITIONS OF THE THIN 

PLATE 

Conditions b/l G η β 

P-stress 0 �24 + 1
24η

�
	
∙ 1
2�4 + 2� ~0.88 ~0.230 

P-strain ∞ �24 + 1
24η

�
	
∙ 1
2�4 + 2� ∙

3
4
	��


 ~0.76 ~0.198 

3D stress 0~∞ 2 �IJ , 4� ∙ �
24 + 1
24η

�
	
∙ 1
2�4 + 2� ∙

3
4
	��


 Varying with b/l 

 

In order to evaluate the accuracy, the empirical solutions are 

compared to the FE analysis results with some random b/l and 

n values which were not used in the fitting. In general, the 

errors are less than 1%; higher values of error occur when b/l 

= 0.7, since the chosen polynomial function cannot perfectly 

match up with the part of the surface of large gradient. Some 

typical errors are shown in Table I. 

A general solution (0.25 < b/l < 2) for steady-state load-line 

creep deformation rate of thin plate can be given by: 
 

����� = 2�#K , 4� �
	��
	 �	 ∙ �

�	�
� ∙ �)

*+,
 ∙ � ! ∙ � �-̅�! �

		   (10) 

IV. INVERSE APPROACH WITH REFERENCE STRESS METHOD 

A. Conversion Relationships 

Using Mackenzie’s method [15], (10) may be re-written as 
 

����� = 2 �#K , 4� �
	��
	L �
	 ∙ �


�	�
� ∙ �)
*+,
 ∙ � ! ∙ � �M -̅�

! �
	
   

 

Evaluating the value of M, where M is a non-dimensional 

scaling factor, which makes 
 

2 �#K , 4� �
	��
	L �
	 ∙ �


�	�
� ∙ �)
*+,
         (11) 

 

approximately independent of n, leading to α = η, and σref = 

ησnom is the so-called reference stress. Now the deformation 

rate can be expressed by  

 

����� = G ∙ � ! ∙ �N�OP2Q
	 = G ∙ � ! ∙ ��N�D�RQ   (12) 

 

where 

G = 2 �#� , 4� �
	��
	η
�	 ∙ �


�	�
� ∙ �)
*+,
      (13) 

 

and  

�D�R = S�	TU = 	η $̅VW
  

 

η and β are conversion factors. Re-arranging (12) gives 

 

��N�D�RQ = ����� /�βJ
/W�       (14) 

 

where βl
2
/d in fact is the so-called equivalent gauge length 

(EGL). The conversion factors η and β are shown in Table II. 

When evaluating the value of M, which makes G 

independent of n, leading to α = η, only choose two random n 

value is not enough for an accurate results. In 3D stress 

conditions, η and β are dependent on b/l, and an MATLAB 

code was used to find the η value through a variety of n values 

from 2 to 10, having lowest error of β. Thus, the values of the 

conversation factors, η and β for b/l from 0.25 to 2 can be 

obtained, as shown in Figs. 7 and 8. 

 

 

Fig. 7 Variation of conversion factor η with b/l 

 

 

Fig. 8 Variation of conversion factor β with b/l 

B. Determination of Creep Properties Using “Theoretical” 

Experimental Data 

A set of “theoretical” experiment tests were performed 

using FE analysis. The model has a value of b/l = 0.5, see Fig. 

3, with l = 20 mm, d = 1.6 mm, B = 1.0×10
-22

 (for stress in 

MPa and time in hour), n = 6, β = 0.23, and $̅ = 25 N/m. The 

equivalent steady-state uniaxial creep strain rate can be given 

by: 

 

����� N�D�RQ = ����� /�βJ
/W� 
 

with b/l = 0.5, the equation can be re-written as: 
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����� N�D�RQ = 4.35����� /�J
/W� 
 

Four load levels are applied on the thin plate, respectively, 

and based on the equation; the applied load $̅ and the steady-

state creep deformation rate of the thin plate Δ� ���  can be 

converted to the equivalent uniaxial stress �D�R  and the 

equivalent strain rate, which are shown in Table III. 
 

TABLE III 

SIMULATION RESULTS OF THE THIN PLATE 

$̅ 
[N/mm] 

Δ� ���   
[mm/h] 

�	TU 
[MPa] 

�D�R 
[MPa] 

��N�D�RQ 
[ℎB� ] log �D�R log ��N�D�RQ	

20 1.74E-08 156.25 123.453 3.028E-10 2.0915 -9.519 

25 6.86E-08 195.31 154.316 1.194E-09 2.1884 -8.923 

30 1.97E-07 234.38 185.180 3.428E-09 2.2676 -8.465 

35 4.98E-07 273.44 216.043 8.665E-09 2.3345 -8.062 

 

A log-log graph of �D�R  and ��N�D�RQ is plotted using the 

simulated results, as shown in Fig. 9.  
 

 

Fig. 9 Log plot of equivalent uniaxial strain rate against the 

equivalent uniaxial stress, with the deformation rate and the load 

applied to the thin plate 

 

According to the log plot of Norton’s Law, the gradient of 

the straight line is n and the intersection is equal to Log (B). 

Thus, the derived material parameters of creep can be 

obtained, as shown in Table IV . 
 

TABLE IV 

DETERMINATION OF NORTON’S LAW USING SIMULATIVE DATA 

Parameter Derived result Set value Error (%) 

n 5.9769 6 0.457% 

Log (A) -22.014 -22 0.06% 

B 0.96829B

 10B

 3.17% 

 

From Table IV, it can be seen that the equivalent stress 

exponent n (= 5.9769) derived from thin plate tests is almost 

the same as the theoretical value (= 6), which gives an error of 

0.457%. The derived Log (B) however has an error of 0.06% 

compared to the theoretical value. The error is reasonable for a 

power function, where a tiny change of stress will lead to a 

significant error. The differences between the values will 

account for the errors from empirical solutions.  

V. DISCUSSION AND FUTURE WORK 

As mentioned before, there is a strong need for the use of 

miniaturised specimens to determine the bulk creep properties 

at high temperature from a very small amount of material. The 

thin plate specimen provides an excellent alternative to other 

existing specimen types with some unique advantages. They 

are easier to be manufactured than all other existing small 

specimen types, due to their simplest geometry. More 

importantly, data obtained can be easily and accurately 

converted to the corresponding uniaxial data, since the 

majority part of the specimen is under a “uniaxial” stress state, 

due to “pure” bending. In particular, the specimen dimension 

in the thickness direction is very small, which is a significant 

advantage over some other small specimen types, such as 

impression creep specimen, for the situations when miniature 

specimens are needed to be removed from very narrow 

regions, such as the various microstructure regions of a heat 

affected zone in a power plant main steam pipe weld [5].  

The analytical solution of the creep behaviour of beams 

under secondary and tertiary creep has been investigated 

previously [16]. In the present work, analytical solutions for 

the steady-state creep behaviour, i.e. the steady-state creep 

load-line deformation rates, of a thin plate, subjected to three-

point bending, were obtained, in which the effects of shear 

stresses are not considered; for the geometry and loading used 

this is an acceptable assumption as shear effects would be 

practically negligible [17]. In practice, both creep strain rate 

and rupture data are expected to be obtained from such a test. 

In this paper, on the basis of Norton’s Law, the analytical 

solutions for steady-state creep deformation rates are derived 

under plane-stress (very small b) and plane-strain (b→∞) 

conditions using a complementary strain energy approach. An 

approximate, empirical solution was then obtained for a range 

of b/l and n values of the plate, based on the results obtained 

from FE analyses. Based on this, the conversion relationships 

between the applied load and the equivalent uniaxial stress and 

between the steady-state creep deformation rate of thin plate 

and the equivalent uniaxial creep strain are established by the 

reference stress method. Using these relationships, it has been 

demonstrated that the creep properties obtained from thin plate 

simulative tests are in very good agreement with the 

theoretical values.  

Future work will be carried out to produce the experimental 

test results in order to fully verify the conversion relationships 

developed. In addition, the data interpretation method should 

be modified to include the data conversion of creep rupture 

life time, if possible.  

APPENDICES 

A. Analytical Solutions under Plane Stress Conditions 

A thin rectangular plate with simple supports subjected to a 

vertical point load P in the middle is illustrated in Fig. 2. Since 

y = 5.9769x - 22.014
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the plate is thin, the effect of the shear stress is assumed to be 

negligible. Under the plane stress, pure bending conditions, 

the plate is treated as a beam. For materials which creep based 

on Norton’s law, the bending moment can be expressed as, 

 

_ = �
`,*
abNc� bQ

,
*Wd        (15) 

 

If e	 is a plate area property 

 

e	 = ab��,
*Wd         (16) 

 

then combining (15) and (16) leads to 

 

_ = �f�`�
,
* e	 and �	 = g(,*

h*  

 

The complementary strain energy density u is 

 

i = j �W� = �
4 + 1 |�|	�� 

       

Therefore, the total complementary strain energy U of the 

plate is given by 
 

l = aiWm = 
`
�	���h** a |_|	��Wn�/


0      (17) 

 

where V is volume of the thin plate. The moment M in the left 

part of the specimen is given by 
 

_ = o
2 n	�0 < n < V

2� 
 

Substituting the above into (17) gives 

 

l = `K*+ "*+,
)*+,�	����	�
�h**          (18) 

 

By differentiating (18) with respect to the applied load P, 

the steady-state, load-line deformation rate Δ� ���  can be obtained 

 

����� = Wl
Wo = �V	�
o	

4	���4 + 2�e		 

 

where e	 for a rectangular cross-section is in the form of  

 

e	 = 24I
24 + 1 ∙ �

W
2�


��	
 

 

thus, the equation under the plane stress conditions is: 

 

����� = �
	��
	 �	 �

�	�
� ∙ �

 
! ∙ � � "�

#! �
	
      (19) 

B. Analytical Solutions under Plane Strain Conditions 

As shown in Fig. 3, a thin plate with simple supports is 

subjected to a vertical line load $̅ in the middle. Since the 

plate is thin, the effect of the shear stress is assumed to be 

negligible, and the stress in the z direction is also negligible, 

under the plane strain conditions,  

�& = 0 
�( = 0 

 

Using the relationships and the Hooke’s Law, the stresses in 

x and y directions are related by: 

 

�( = q�r            (20) 

 

where q is Poisson’s Ratio.  

In order to obtain the deformation rate of the thin plate 

under the plane strain conditions, a multi-axial form of creep 

behavior needs to be used. For a Norton’s law, the effective 

stress is: 
 

��RR = 1
√2tN�r − �(Q
 + ��r − �&�
 + N�( − �&Q
 

 

Substituting the stress conditions into the above gives: 

 

��RR = �r√1 − q + q
        (21) 

 

The strain in the x direction under the effective stress is 

given by: 

 

�r� = `N��uuQ*
��uu v�r − �


 N�( + �&Qw       (22) 

 

Using (20) and with �& = 0, (22) can be simplified to: 

 

�r� = `N��uuQ*
��uu �1 − x


��r        (23) 

 

Substitute (21) into (23) and thus creep strain in x direction 

is obtained: 

 

�r� = �1 − x

���1 − q + q
�*y, �r	     (24) 

 

For steady-state creep due to the volume assumption, the 

Poisson’s ratio v takes a value of 0.5. Thus, (24) can be re-

written to: 

 

�r� = �
)
*+,
 ∙ ��r	          (25) 

 

Equation (25) is similar to Norton’s law, and thus this 

equation can be used to obtain the deformation rate of thin 

plate under the plane strain conditions using the same method 

in Appendix A. The equation under the plane strain conditions 

is therefore given by: 

 

����� = �
	��
	 �	 �

�	�
� ∙ �

 
! ∙ �)

*+,
 ∙ � �-̅�! �

	
      (26) 

NOMENCLATURE 

b, d   cross-section dimensions of the plate 

B, n   constants in Norton’s creep law (��� = ��	) 
E, v   Young’s modulus and Poisson’s ratio 

EGL   equivalent gauge length 

I    second moment of area of the plate 
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In     cross-section property of the plate 

c, c�     curvature and curvature rate 

l     span of the supports of the thin plate 

M      bending moment  

$̅, P    force per unit length and force 

t     time 

u, U  complementary strain energy density and 

complementary strain energy 

V     volume 

x, y, z   Cartesian coordinats 

α     reference stress scaling factor 

β, η    conversion factors 

��, ���, �����  deformation rate, creep deformation rate and steady 

state creep deformation rate, respectively 

��, ���,�����   strain rate, creep strain rate and equivalent creep strain 

rate, respectively 

�r, �(, �&  strains in Cartesian coordinates 

�,	�� , σ��  stress, maximum principal stress and equivalent stress, 

respectively 

�	TU, �D�R   nominal stress and reference stress 

�r, �(, �&   stresses in Cartesian coordinates 
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