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Abstract—In this study, one dimensional phase change problem 

(a Stefan problem) is considered and a numerical solution of this 

problem is discussed. First, we use similarity transformation to 

convert the governing equations into ordinary differential equations 

with its boundary conditions. The solutions of ordinary differential 

equation with the associated boundary conditions and interface 

condition (Stefan condition) are obtained by using a numerical 

approach based on operational matrix of differentiation of shifted 

second kind Chebyshev wavelets. The obtained results are compared 

with existing exact solution which is sufficiently accurate. 
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I. INTRODUCTION 

OVING boundary problems (Stefan problems) arise in 

many important areas of science and engineering. These 

problems have wide applications in industries, food 

technology, vehicle design, growing crystals for 

semiconductors, image development in electro photography, 

cryosurgery, plasma physics, geophysics, etc. The solutions of 

moving boundary problems have been of special interest due 

to the inherent difficulties associated with its nonlinear nature 

and presence of moving boundary/boundaries. The history and 

various solutions (exact, approximate and numerical) are well 

covered in [1]-[3]. Some recent approach to moving boundary 

problem can also be seen in [4], [5]. 

Recently, numerical algorithms based on wavelets have 

drawn a great attention for solving linear and non-linear 

differential equations. These numerical algorithms are 

remarkable due to its simplicity and accuracy. Moreover, rate 

of convergence of numerical techniques based on finite 

difference and finite element method are algebraic. But, Rate 

of convergence of numerical methods based on wavelets is 

exponential in simple geometry [15]. Several differential and 

integrals equations are solved by using Legendre wavelets [6], 

[7] and Chebyshev wavelets [8]-[17].  

In this study, a numerical solution of a one-dimensional 

phase change problem is obtained. The solution of the 

problem is based on similarity transformation and Operational 
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matrix of differentiation of shifted Chebyshev polynomial of 

second kind wavelets. The comparisons between obtained 

numerical results and existing analytical solutions are also 

shown through figures and table. 

II. SECOND KIND CHEBYSHEV POLYNOMIALS AND THEIR 

SHIFTED FORM 

Chebyshev polynomials of second kind are defined on [-1, 

1] as:  
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These polynomials are orthogonal on [-1, 1] with respect to 

weight function 21 x− , i.e.  

 








≠

=
=−∫

− .,
2

,,0

)()(1
1

1

2

mn

mn

dxxUxUx mn π
      (2) 

 

Chebyshev polynomials of second kind can also be found 

from following Rodrigues formula: 
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The shifted second kind Chebyshev polynomials are 

defined on [0, 1] by )12()(
* −= xUxU nn . These polynomials are 

orthogonal on [0,1] with respect to weight function 2xx − ; 

that is,  
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III. OPERATIONAL MATRIX OF DERIVATIVES FOR SHIFTED 

SECOND KIND CHEBYSHEV WAVELETS 

Wavelets include a family of functions which are 

constructed from dilation and translation of single function. 

This single function is called the mother wavelet. When the 

dilation parameter and the translation parameter vary 

continuously, then the following family of continuous 

wavelets can be found (see [15]-[17]):  
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where a and b are the dilation parameter and the translation 

parameter, respectively.  

Second kind Chebyshev wavelets )(tnmψ  are defined on the 

interval [0, 1] as:  
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where m = 0,1,2,.......,M, n = 0,1,2,......2
k 
- 1. 

Clearly, second kind Chebyshev wavelets have four 

arguments k, n, m (order of second kind Chebyshev 

polynomials), and t (normalized time). In this paper, the 

following properties of second kind Chebyshev wavelets 

(given in [15]-[17]) are used:  

a. In terms of shifted second kind Chebyshev wavelets, a 

function f (t) defined over [0,1] may be expressed as: 
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If the infinite series of )(tf  is truncated, then (7) becomes  

 

),()()(
12

0 0

tCtCtf

k

n

M

m
nmnm ψψ =≈ ∑ ∑

−

= =       

 (9) 

 

where C  is )1(21 +× Mk

 
and )(tψ  is 1)1(2 ×+Mk  matrices 

which are defined as: 
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b. If )(tψ is the second kind Chebyshev wavelets vector then 

the first derivative of )(tψ can be defined as: 
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where D is )1(2 +Mk square operational matrix of derivative 

of shifted second kind Chebyshev wavelets (see proof in 

[15]). The structure of D is given as:  
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where G  is an (M+1) square matrix whose (r , s)th element is 

given by  
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c. The operational matrix for the nth derivative of second 

kind Chebyshev wavelets vector can be derived as: 
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where nD  is the nth power of matrix D.  

IV. MATHEMATICAL MODEL 

In this section, a problem of solidification of liquid is 

considered in semi-infinite domain ( ∞<≤ y0 ). Initially, the 

liquid is assumed at its fusion temperature fθ . At time 

0=τ , a temperature 0θ  ( fθθ <0 ) is imposed at 0=y . As 

time proceeds, solidification process starts and the governing 

model of this process [1], [2] are formulated as:  
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where θ  is the temperature distribution in solid region, α  is 

the solid diffusivity, ρ is the liquid density, h is the latent 

heat, k  is the thermal conductivity of solid, τ  is the time and 

)(τS  is the position of moving interface.  

Now, we consider the following dimensionless variables 

[2]: 
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where l is the characteristic length (any convenient length), 

)( 0θθθ −=∆ fref
 is a reference temperature and Ste  is the 

Stefan number.  

Introducing above dimensionless variables into (16)-(19), 

one can get the following equations in dimensionless form:  
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V. SOLUTION OF THE PROBLEM 

First, we consider the following similarity transformation as 

given in [1], [2]: 
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and 
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whereλ is a positive constant. 

Under the above transformation, (21)-(24) become 
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Now, approximating )(ξη  and ξ  in terms of the second 

kind Chebyshev wavelets [15] as:  
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where  
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From (15), we have 
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Substituting (30)-(32) into (27), we get 
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Equations (28) and (29) give 
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respectively.  

As given in [15]-[16], (33) generates )2)1(2( −+Mk  

equations at the first )2)1(2( −+Mk  roots of )(*
)1(2

ξ+MkU
 
and 

(34)-(35) will also produce three more equations in terms of 

)1)1(2( ++Mk  unknowns ( )1(2 +Mk  constants and one λ ). 

These equations can be solved by any appropriate numerical 

method and after getting these unknowns one can calculate 

temperature distribution in the domain and position of 

interface.  

VI. NUMERICAL RESULTS AND DISCUSSION 

In this section, all numerical computations have been done 

by considering M=2, k=0 and results are presented through 

figures. Hence, the following matrices ,D 2D , ψ,C  and F are 

considered in the calculations:  
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TABLE I  

COMPARISONS BETWEEN EXACT SOLUTIONS AND NUMERICAL SOLUTIONS 

Ste Time 

(t) 

Exact value of 

s(t) 

Approximate 

value of s(t) 

Absolute 

Error 

1.0 0.0 
0.05 

0.10 

0.15 
0.20 

0.25 

0.30 
0.35 

0.40 

0.0 
0.34391 

0.48636 

0.59566 
0.68782 

0.76900 

0.84239 
0.90989 

0.97272 

0.0 
0.32771 

0.46346 

0.56762 
0.65543 

0.73279 

0.80273 
0.86705 

0.92692 

0.0 
0.0162 

0.0229 

0.0280 
0.0324 

0.0362 

0.0396 
0.0428 

0.0458 

5.0 0.0 
0.5 

1.0 

1.5 
2.0 

2.5 

3.0 
3.5 

4.0 

0.0 
0.26558 

0.37560 

0.46000 
0.53118 

0.59387 

0.65055 
0.70268 

0.75120 

0.0 
0.25015 

0.35377 

0.43328 
0.50031 

0.55936 

0.61275 
0.66184 

0.70754 

0.0 
0.0154 

0.0218 

0.0267 
0.0308 

0.0345 

0.0378 
0.0408 

0.0436 

10.0 0.0 
2.0 

4.0 

6.0 
8.0 

10.0 
12.0 
14.0 

16.0 

0.0 
0.27379 

0.38720 

0.47422 
0.54758 

0.61222 
0.67065 
0.72438 

0.77440 

0.0 
0.26001 

0.36771 

0.45035 
0.52003 

0.58141 
0.63690 
0.68793 

0.73543 

0.0 
0.0137 

0.0195 

0.0238 
0.0275 

0.0308 
0.0337 
0.0364 

0.0389 
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Table I shows the comparison between exact solution and 

obtained numerical solution for different value of Stefan 

numbers. Figs. 1-3 represents accuracy of our results with the 

existing exact solution (given in [1], [2]) for the trajectories of 

interface at different value of Stefan numbers (Ste =1.0, 5.0, 

10.0). It is seen from the table and figures that the obtained 

numerical solution is sufficiently closed to the exact solution. 
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Fig. 1 Plot of s(t) vs t at Ste = 1.0 
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Fig. 2 Plot of s(t) vs t at Ste = 5.0 
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Fig. 3 Plot of s(t) vs t at Ste = 10.0 

VII. CONCLUSION 

In this paper, a Stefan problem governing the freezing 

process is considered and its numerical solution is obtained by 

using operational matrix of differentiation of shifted second 

kind Chebyshev wavelets. It is found that this approach is a 

simple technique and the tactic is computer intensive. 

Moreover, the obtained results are sufficiently accurate. The 

authors believe that the accuracy of the approach can be 

increased by considering/taking higher values of M and k.  
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