
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:5, 2015

1782

 

 

  

Abstract—Current systems complexity has reached a degree that 

requires addressing conception and design issues while taking into 
account environmental, operational, social, legal and financial 

aspects. Therefore, one of the main challenges is the way complex 

systems are specified and designed. The exponential growing effort, 

cost and time investment of complex systems in modeling phase 
emphasize the need for a paradigm, a framework and an environment 

to handle the system model complexity. For that, it is necessary to 

understand the expectations of the human user of the model and his 
limits. This paper presents a generic framework for designing 

complex systems, highlights the requirements a system model needs 

to fulfill to meet human user expectations, and suggests a graph-
based formalism for modeling complex systems. Finally, a set of 

transformations are defined to handle the model complexity. 

 

Keywords—Higraph-based, formalism, system engineering 

paradigm, modeling requirements, graph-based transformations.  

I. INTRODUCTION 

SUALLY the approach we follow in a project depends on 

how the results will be used. To optimize the design time, 

it is important to have a useful framework for analyzing 

complex systems and study their evolution. The use of such a 

framework requires an understanding of the boundaries of a 

given system, its components, its representation, and the 

evolution of its model and ways of representation.  

The complexity that emerges while designing and 

developing the system is usually the result of the 

multidimensionality of the system. To understand its behavior, 

a system is considered in the context of its environment, 

including interactions and interfaces. Indeed, the complexity 

of a system is often characterized, beyond the inherent 

complexity of components and their variety, by the complexity 

of the interaction network, from which emerges behaviors as 

intentional and unintentional, which may be harmful and 

difficult to predict and control. 

With emergence of complex engineering systems, starting 

with defense systems after WW2, a new approach was 

required to handle the increasing complexity of these new 

complex engineering systems. The traditional reductionists 

approach “divide and conquer" was no longer valid to address 

this issue. It was necessary to define a holistic approach: every 

part in a system is related to every other to form a coherent 

 
Hycham Aboutaleb is a Research Engineer in the Computer Science and 

System Engineering Department at ENSTA ParisTech, 828 boulevard les 

Maréchaux,Palaiseau, 91120 France (corresponding author e-mail: 
hycham.abou-taleb@ensta-parictech.fr).  

Bruno Monsuez is the Director of the Computer Science and System 

Engineering Department at ENSTA ParisTech, 828 boulevard les Maréchaux, 
Palaiseau, 91120 France. 

whole. Such an approach analyzes better the emerging 

behavior as well as the interdependencies. Using a holistic 

approach induces considering the system as a unified whole. 

This paper presents a paradigm for system engineering. The 

first section is dedicated to the definition of the paradigm. The 

second section extracts the requirements a model needs to 

fulfill to address the complexity issue. The third section 

presents formalism for a higraph-based model that will be 

used in this paper for system modeling. Necessary graph-

based transformations that apply general concepts are also 

presented. A final section discusses how the proposed 

formalism addresses the complexity issue.  

II. SYSTEM ENGINEERING PARADIGM 

Unprecedented levels of complexity have emerged from 

contemporary engineering systems. While the organic and 

functional aspects remain at the core of the systems 

engineering method, there is an urgent need to more 

effectively address additional aspects that are correlated to the 

functional spaces of the system of interest. Dimensions to be 

taken into account will vary from one system to another 

depending on the system perimeter. Therefore, it is necessary 

to clearly analyze the system-to-design context since a 

software system will not have the same environment as a 

network or a mechanical system. However, since a system 

function is performed by the system itself, various dimensions 

of such a system are related to each other. As different aspects 

become too complex for the mind to easily understand or 

operate with, different approaches are possible in order to 

better understand a complex system. Four concepts have been 

taken into account in this method: abstraction level, 

decomposition level, view, engineering perspective (Fig. 1). 
 

 

Fig. 1 System Engineering Paradigm 

Handling Complexity of a Complex System Design: 

Paradigm, Formalism and Transformations 
Hycham Aboutaleb, Bruno Monsuez 

U



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:5, 2015

1783

 

 

 While abstraction level allows the observer to have a 

holistic view of a system but in respect to different aspects, the 

level of decomposition partitions the problem space and 

allows a localized understanding of the different dimensions 

of a system. As each person understands a given problem in 

his/her particular manner, it is of common sense that we can 

analyze a system from different points of view that are 

perfectly coherent with each other see. This approach is 

function-centered since it depends on the characterization of a 

system according to its functional spaces. [1], [2] 

• Abstraction: view of the system that is relative to both the 

level of detail through decomposition and the type of 

information captured, but one does not need to consider 

these layers to understand a general phenomenon or one 

that is possible only in certain conditions. The functional 

spaces are the abstraction levels. 

•  Decomposition: isolate system components for a detailed 

analysis, given that all information of the context of the 

analyzed element is regarded. 

• Perception: the point of view of each actor that limits or 

filters the available information, it allows building 

different models or representations of the system. 

• Engineering Perspectives: what is needed to be taken into 

account to design the system. There are technical aspects 

(technical processes) as well as non-technical ones. 

Four functional spaces are considered (Fig. 1): 

• Structural space: characterizes the form of the system 

physical components and their interrelationships. Theses 

structural aspects include both vertical and horizontal 

dependencies, such as hierarchy or coupling of the 

component systems. Methods and tools for designing 

complex systems must accommodate multiplicity of 

scales in regard to the structural elements that comprise 

them. 

• Dynamical space: characterizes changes over time, as 

well as time-based properties such as adaptability of the 

system. 

• Behavioral space: relates to the model of the emergent 

behaviors resulting from the complex interconnections in 

order to understand how the systems will perform. 

• Decisional space: relates to the decisions to be taken, as 

well as the actions expected to be performed by the 

system. 

III. MODEL-BASED SYSTEM ENGINEERING 

Many Model-Based System Engineering (MBSE) 

methodologies emerged after the introduction of system 

engineering in the industry. 

In order to better understand the key features of different 

methodologies, it is important to establish a terminology for 

better understanding these methodologies (Fig. 2): 

• Process: sequence of tasks aiming to achieve a particular 

objective. Process defines what is to be done without 

defining how each activity has to be performed. 

• Method: specifies how to perform each task. 

• Tool: helps to accomplish of how. It usually supports a 

language that helps applying the method. 

• Methodology: is defined “as a collection of related 

processes, methods, and tools”. In model driven context, 

MBSE can be defined as a collection of process, tools and 

methods help to harmonize system engineering discipline. 

• Environment: consists of external conditions, systems, or 

factors that have an influence on systems, actors. The 

purpose of environment is to put in practice the use of 

tools and methods of a project. 

Thus, the ability to model and design a system is limited by 

the methods. Without a holistic approach, the cost of model 

construction and the effort required to integrate various system 

models may present critical concerns that might be reflected in 

the resulting system design [4]. 

 

 

Fig. 2 System Engineering Framework [3] 

IV. SYSTEM REPRESENTATION AND MODELING 

Model-based development has been adopted more or less in 

development of complex systems today. To understand this 

trend, it is necessary to focus on the properties of complex 

systems to design and to the needs of the stakeholders 

involved in the development of these complex systems. A 

model has a clear purpose: to help designing the system of 

interest. Modelers must exclude all factors not relevant to the 

problem to ensure the project scope is feasible and the results 

timely. The value of the modeling process begins early on, in 

the problem definition phase. The modeling process helps 

focus diagnosis on the system of interest. 

A. Modeling Issues 

When developing complex systems, two main problems 

arise: 

- The need to address all the aspects of the system of 

interest (to design and develop). [5] 

- The need to share the knowledge between people 

involved in the process. [6] 

To match these needs, model-based system engineering is 

necessary. However, the need of a model-based approach 

induces new issues: 

- Trustworthiness of the model: how close the model is to 

the reality? 

- Understandability of the model: is the model perceived 

and understood the same way by people? 

- Usefulness of the model: does the model help to get the 

desired results? 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:5, 2015

1784

 

 

1. Trustworthiness of System Model 

Given the limited cognitive capabilities of humans, we use 

models of the properties of the system and its 

context/environment that are of relevance and interest, and 

disregard details considered irrelevant for the system design 

and development. A model is thus a deliberate simplification 

of reality with the objective of explaining a set of selected 

properties of the real system that is relevant for the purpose of 

its development. This model starts first with a mental process 

to capture relevant information, then the information captured 

is expressed through means to be communicated. This 

information is the minimum information necessary to have a 

satisfactory understanding of the perceived real system and 

environment. [7] 

2. Understandability of System Model 

The understandability of a model depends on how an 

individual perceives the model that he/she is going to use. 

Two people share the same mental model if they have similar 

descriptions, explanations, and predictions of the system of 

interest. Specifically, models allow people to similarly predict 

and explain the behavior of the system of interest, to recognize 

and remember relationships among its components and with 

its environment, and to construct expectations for what is 

likely to occur next. 

3. Usefulness of System Model 

To help ensure the utility of shared mental models, a 

distinction is often drawn among different types of mental 

models, normally based on their underlying content. In order 

to be useful, a model shall facilitate accomplishing a task and 

allow each individual to work effectively as a member of the 

team [8]. Thus, a model would be considered effective if team 

performance is increased. According to [9], a team 

performance is related to the taskwork mental model 

similarity, the teamwork mental model similarity, the taskwork 

mental model perceived accuracy, and the teamwork mental 

model perceived accuracy. 

Moreover, it shall allow engineers to reuse and share past 

solutions. This has an additional advantage: inexperienced 

engineers benefit from the work of more experienced ones and 

are able to work at their quality levels. 

B. Model Complexity and Hierarchy 

Since systems are inherently complex, to obtain a model 

that is trustworthy, understandable, and useful, it is necessary 

to architecture the complexity. As it is described in [10], there 

is a form of organized complexity in systems. To handle large 

amounts of data, it is often useful to have a classification or an 

order. One effective way to classify a set of elements is to use 

a hierarchical organization of this set of elements, introducing 

sometimes new order relations among the elements. With the 

hierarchy, in addition to be able to handle elements together, it 

becomes possible to handle subsets of elements together. 

There are two ways how to organize hierarchically a set: 

grouping and encapsulation. 

• Grouping: It is possible to group items based on similar 

properties or characteristics. 

• Encapsulation: It is possible to encapsulate many 

elements within a single element of a higher level and 

then consider only the properties of this element when an 

analysis is performed. 

Therefore, to handle complexity of the real system, its 

model should be the result of a simplification strategy 

consisting in: 

• Conceptual chunking: refers to the formation of a higher-

level concept that captures the essence of the problem-at-

hand and reduces the complexity by omitting irrelevant 

detail and reducing its dimensionality [11]. 

• Segmentation: refers to the decomposition of a complex 

system into smaller parts that can be studied in isolation, 

in order that the capacity limitations of the human mind 

are avoided. 

Consequently, we can identify two types of models 

hierarchies. On one hand, there is the generalization, i.e. 

hierarchy of types. The word type refers generally to a 

representation that gathers main properties of objects that have 

common characteristics [12]. One type allows to group 

elements with common characteristics. The mechanism of 

sub-typing induces a hierarchy: an entity type T2, derived 

from type T1 has at least all the properties of an entity type 

T1. 

On the other hand, there is aggregation. The word 

aggregation refers generally to a representation that gathers 

elements into another higher-level element to hide them when 

necessary. The higher-level element that encapsulates its 

contained elements has properties that are the emerging 

properties at this level due to the contained elements. Other 

names like nested hierarchy or container hierarchy are also 

common. Encapsulation decreases the complexity of the 

system model [13]. 

Finally, the hierarchy has an additional advantage: 

depending on the selected level, it is possible to observe 

different points of view. 

C. Modeling Requirements 

As presented in the previous section, the modeling approach 

must be powerful enough to express all relevant properties of 

a system. In order to enable the modeling of systems with the 

characteristics mentioned in the previous section, the 

modeling approach needs to meet the following requirements 

[14]-[17]:  

• Analogy: A model shall be analogous to existing models 

or at least to a conceptual model to avoid conceptual 

“clash”. If there is such analogy, it should be pointed out 

to help establishing links to the existing conceptual model 

of a user and facilitates reasoning: human reasoning is 

less based on an application of formal laws of logic than 

on memory retrieval and analogy. 

• Utility: A model shall serve a useful well-defined 

purpose. 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:5, 2015

1785

 

 

• Stability: A model shall be usable uniformly in many 

different contexts without any qualification or 

modification. 

• Projection: A model shall support diverse and integrated 

views on the system under development. By this way, 

different aspects of the system can be independently 

analyzed and specified. 

• Modularity: A model shall have a hierarchical 

organization of its composing elements. Elements might 

be aggregated and encapsulated in a higher-level element 

to facilitate analysis and eventual reuse. 

• Compositionality: A model shall allow deducing the 

properties of a system from the properties of its 

subsystems. It is essential for the reuse of existing 

components, and enables to incrementally build systems 

out of modularly specified parts. 

• Abstraction: A model shall enable capturing properties of 

a system that are needed to understand one of its aspects 

without paying attention to the details or the other aspects 

of the system. 

• Refinement: A model shall start with high-granular 

descriptions and allow to incrementally refining them into 

more detailed ones. A refined model shall guarantee all 

the properties of the abstract model. 

V. HIGRAPH-BASED MODEL 

Graphs have been naturally used to represent and model 

problems since the emergence of computer science. Graph-

based models give a visual and intuitive representation, as 

well as with required accuracy. They are a well-suited means 

to describe in a natural way all kind of systems, where nodes 

describe system entities and edges describe relations between 

them [18]. However when it comes to representing complex 

systems, the absence of hierarchy is certainly one of the main 

defaults of graph-based representations. [19] 

A. Definition 

A higraph is a graph extended to include notions of depth 

and orthogonality and was introduced by Harel in [20], [21]. 

In other words: 

 

Higraph = Graph + Depth + Orthogonality 

 

Definition (Higraph). A higraph is a quadruble 

);;;( Π= ρEBH  where: 

- B is the set of blobs (or nodes); 

- E is the set of edges. 

- ρ is the hierarchy function. It assigns to each blob Bb ∈  

its set of sub-blobs ρ (b). 

- Π is the orthogonality (or partitioning function) defined as
BBB ×→Π 2: , associating with each blob Bb ∈  some 

equivalence relation Π(b) on the set of sub-blobs, ρ (b). 

By its definition, the depth, shown by a higraph is defined 

by the enclosure of one node within another. Thus, it is 

possible to develop a higraph from a tree (Fig. 3). 

B. Transformations 

To meet the modeling requirements defined previously, we 

need to define a set of higraph-based transformations that will 

fulfill these expectations. 

 

 

Fig. 3 Developing a higraph from a tree 

1. Generalization 

First, we need to define the Type Higraph MΠ associated to 

the Higraph M. To achieve this it is necessary to define first 

generalization. 

Definition (Generalization). 

Let MΠ be a Type Higraph. 

Let M be a Model Higraph. 

Let Π→ MMg :  a morphism that associates to each 

element (object, flow, attribute) x of the Model Higraph M to 

its type, with MΠ, the Model Type Higraph. 

We have: 

- ;)(, Π∈∈∀ MxgMx  

- ));(())((, xgxgMx ρρ ⊂∈∀  

- ).()((, txgMt t ρ⊂Π∈∀ Π
 

Besides, );;;( Π=Π ρEBM  is a higraph where: 

- 0=E  ; 

- ).()(, xxBx ρ=Π∈∀  

2. Aggregation 

Now we define the function aggregation. This allows a 

higher-level element to encapsulate its contained elements 

while having its properties that are the emerging properties at 

this level due to the contained elements. 

Definition (Aggregation) 

Let M be a Model higraph. 

Let x be a model node. 

Let yi be model nodes such that )(xy ρ∈ . 

The aggregation function fagg maps a set of elements yi to a 

single element x: 

 

MMf agg →: such that xyyf
xagg =),...,(
)(1 ρ

. 

 

This function is used to represent an object as a black box, 

i.e. without its children elements. Its corresponding inverse 

function is the decomposition function. 

3. Decomposition 

Definition (Decomposition) 

Let M be a Model higraph. 

Let x be a model node. 

Let yi be model nodes such that )(xy ρ∈ . 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:5, 2015

1786

 

 

The decomposition function fdec maps a single element x to 

a set of elements yi: 

 

MMf dec →: such that { }
)(1 ,...,)(

xdec yyxf
ρ

= . 

 

This function is used to represent an object as a glass box, 

i.e. with its children elements. Its corresponding inverse 

function is the aggregation function. 

4. Refinement 

Definition (Refinement) 

Let M be a Model higraph. 

Let x, y be two model nodes. An element x is said to be 

refined by an element y if x contains y, i.e.: 

- )(xy ρ∈  

This transformation allows refining an element in the 

model. 

5. Filtering 

The Model Views are obtained by filtering the Type 

Higraph. Thus, there exists a filtering function that can be 

applied: Filtering. The Model Views are obtained by filtering 

the Type Higraph. 

Definition (Filtering) 

A filter function is a function VMf →Π: , where MΠ is 

the Type Higraph and V is a Model View, which either 

preserves nodes in the Type Higraph or removes them. 

Thus: 

- 
Π⊂ MV  

- )()( Π⊂ MV ρρ  

This transformation allows extracting a view containing 

elements of the model -that are of the same type- and their 

decomposition. 

VI. CONCLUSION 

System complexity is usually due to the recursive intricacy 

and the interactions between the subsystems. However, human 

behavior makes a system far more complex and complicated 

due to the perception: stakeholders usually do not have the 

holistic view that enables understanding of the system and 

taking into account all the factors and elements that can are 

related to the design process. 

To handle the complexity of a complex system design, we 

proposed a better understanding by defining a system 

engineering paradigm. We identified the several levels a 

system can have, and define the functional spaces a system 

usually has. It is expected that this approach could be used for 

any system. 

In this paper, we also defined the requirements a system 

model needs to meet to be trustworthy, useful and 

understandable. One of the most important issues addresses 

was the model complexity. To handle the complexity, it is 

necessary to architecture the model. Hierarchy is the most 

intuitive way to address this issue. Two main types of 

hierarchy have been defined in that purpose. The proposed 

higraph-based formalism and its associated transformations 

allow representing complex systems while meeting the 

modeling requirements defined beforehand. 

It is now relevant to ask a new question: how to evaluate the 

complexity of a system model. This would be especially 

useful to measure the perceived system complexity (i.e. the 

system model complexity). It would also prove the efficiency 

of such an approach.  

Another question would be the implementation of this 

approach. Literature review and industrial experience indicate 

that system engineers are still in need of a modeling language 

that is simple and intuitive to support many tasks in system 

engineering and architectural reasoning.  

REFERENCES  

[1] Hycham Aboutaleb, Samuel Boutin, and Bruno Monsuez. Handling 
scenarios complexity in model-based design. Concurrent Engineering: 

Research and Applications, Special issue: Complex systems design and 

Management, 20(2):1–20, 2012. 
[2] Sara Sadvandi, Hycham Aboutaleb, Cosmin Dumitrescu. “Negotiation 

Process from a Systems Perspective”. In Proceedings of CSDM 2011, 

Paris, France, 2011. Springer Verlag. 
[3] Martin, James N., Systems Engineering Guidebook: A Process for 

Developing Systems and Products, CRC Press, Inc.: Boca Raton, FL, 
1996. 

[4] Hsueh-Yung Benjamin Koo. A Meta-language for Systems Architecting. 

PhD thesis, MIT, USA, (2005) 
[5] Håvard D. Jørgensen. Interactive Process Models. PhD thesis, 

Norwegian University of Science and Technology Trondheim, Norway, 
2004. 

[6] Mark Sean Avnet. Socio-Cognitive Analysis of Engineering Systems 

Design: Shared Knowledge, Process, and Product. PhD thesis, MIT, 

USA, 2009. 
[7] Ali Mostashari. Stakeholder-Assisted Modeling and Policy Design 

Process for Engineering Systems. PhD thesis, MIT, USA, (2005) 

[8] J.A. Cannon-Bowers, E. Salas, and S.A. Converse. Shared mental 
models in team decision making. In Individual and Group Decision 

Making, pages 221–246. N.J. Castellan Jr, (1993) 

[9] Kevin Forsberg and Harold Mooz. The relationship of systems 
engineering to the project cycle. Journal of Applied Psychology, 

85(2):273–283, 2000. 

[10]  Herbert A. Simon. “The architecture of complexity.” Proceedings of the 
American Philosophical Society, 106(6):467–482, 1962. 

[11] Graeme S. Halford, Rosemary Baker, Julie E. McCredden, and John 

D.Bain. “How many variables can humans process?” Psychological 
Science, 16(1):70–76, 2005. 

[12] Luca Cardelli and Peter Wegner. “On understanding types, data 

abstraction,and polymorphism.” ACM Comput. Surv., 17(4):471–522, 
1985. 

[13] Valerie Ahl and T. F. H. Allen. Hierarchy Theory - A Vision, 

Vocabulary, and Epistemology. Columbia University Press, 1996. 
[14] G. S. Halford, J. Wiles, M. S. Humphreys, and W. H. Wilson. “Parallel 

distributed processing approaches to creative reasoning: Tensor models 

of memory and analogy.” In Proceedings of the AAAI Spring 
Symposium, Palo Alto, California, USA, 1993. T. Dartnall, S. Kim, and 

F. Sudweeks. 

[15] Hermann Kopetz. The complexity challenge in embedded system 
design. In ISORC, pages 3–12, 2008. 

[16] Marc Bouissou. Gestion de la complexité dans les études quantitatives 

de sûreté de fonctionnement de systèmes. Lavoisier, 2008. 
[17] Alexander Harhurin, Judith Hartmann, and Daniel Ratiu. Motivation and 

formal foundations of a comprehensive modeling theory for embedded 

systems. Technical report, Technical University of Munich, 2009. 
[18] Leen Lambers. Certifying Rule-Based Models using Graph 

Transformation. PhD thesis, Technical University of Berlin, Germany, 

2009. 
[19] Frank Drewes, Berthold Hoffman, and Detlef Plump. “Hierarchical 

graph transformation”. Journal of Computer and System Sciences, 

64(2):449–283, 2002. 
[20] David Harel. Statecharts: “A visual formalism for complex systems.” 

Science of Computer Programming, 8(5):231–274, 1987. 



International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:5, 2015

1787

 

 

[21] David Harel. “On visual formalisms.” Communications of the ACM, 

31(5):514–530, 1988. 


