
International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:2, 2015

123

 

 

 
Abstract—In this paper, some limit properties for mixing random 

variables sequences were studied and some results on weak law of 
large number for mixing random variables sequences were presented. 
Some complete convergence theorems were also obtained. The results 
extended and improved the corresponding theorems in i.i.d random 
variables sequences. 

 
Keywords—Complete convergence, mixing random variables, 

weak law of large numbers. 

I. INTRODUCTION 

UPPOSE that ( , , )F P  is a probability space and 

n{X , n 1} be a sequence of random variable defined on 

( , )F .  

Definition 1. A finite family of random variables 
{X ,1 }i i n  is said to be negatively associated (NA) if 

for any disjoint subsets A and B of {1, 2 , }n and any real 

coordinatewise nondecreasing functions f on AR  and g on 
BR . c o v ( ( , ) , ( , )) 0i jf X i A g X j B   , 

whenever the covariance exists. An infinite family of random 

variables {X ,1 }i i   is said to be NA if every finite 

subfamily is NA. 
Definition 2. A finite family of random variables

{X ,1 }i i n   is said to be  
-mixing if for any finite 

subsets ,S T N ,

( ) su p { ( , ); ( , ) } 0 ,s S T d is t S T s s      
. Here  
 

1/2 1/2

cov( ( , ), ( , ))
( , ) 0 sup{ , , }

( ( , )) , ( ( , ))
i j

i j

f X i S g Y j T
S T f g

Varf X i S Varg Y j T
   

  
 

, 

 
be a class of functions, which are coordinatewise increasing. 

It is easy to see that{X ,1 }i i n   is NA if and only if 

( ) 0s  ,for 1s  . So  
-mixing is weaker than 

*
-mixing and can be regarded as the asymptotically negative 

association or negative side 
* -mixing. Zhang [1] gives an 

example of a  
-mixing sequence which is neither NA nor 

* -mixing. Since introducing the concept, [2] pointed out and 
proved in their paper that a number of well-known multivariate 

 
Yan-zhao Yang is with Department of Mathematics, Qingdao University of 

Science and Technology, Qingdao CO 266061, China (e-mail: 
yangyanzhao@qust.edu.cn).  

distributions possess the NA property. Now people know that 
NA random variables have wide application in reliability 
theory and multivariate analysis. 

Recently, [3] showed that NA structure plays an important 

role in risk management. Because of including NA and 
*

-mixing random variables, the notions of  
-mixing random 

variables have received more and more attention in recent years. 

A great number of papers for  
-mixing random variables 

have appeared in the literature. See, for example, [4] for 
moment inequalities and application, [5], [6] for Central limit 
theorems, [7] for Inequalities of maximum of partial sums and 
weak convergence, [8], Strong consistency of M-estimator in 
nonlinear models etc. When these are compared with the 
corresponding results for sequences of independence random 
variables, there still remains much to be desired. 

We assume in the whole paper that AI  be the indicator 
function of the set A . C denotes a positive constant which 
may be different in various places. 

The main object of the paper is to study the limit properties 

on partial sums of  
-mixing random variables sequences 

and try to obtain some new results. We establish the weak law 
of large numbers and complete convergence theorems. Our 
results in this paper extend and improve the corresponding 
results of [9] and [10]. The results depend on the following 
lemmas. 

Lemma 1. (see [1]) Let n{X , n  1}  be a sequence of  

-mixing random variables. 0iE X  ,
q

iE X   for 

some 2q  and for every 1i  .Then there exists a positive 
constant C depending only on q , such that 
 

2 /2

1
1 1 1

(max ) ( ( ) )

q
i n n

q q
j i i

i n
j i i

E X C E X EX
    

   
 

 

Lemma 2 Let n{X , n 1}  be a sequence of  
-mixing 

random variables. Then for any 0x  ,there exists a positive 
constant C such that for any 1n   
 

2

1 1
1

(1 (max )) ( ) (max )
n

k k k
k n k n

k

P X x P X x CP X x
   

    
 

 

Proof: Let ( )k kA X x  and 
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1 1
1 ( ) 1 ( m ax )

n

n k k
k k n

P A P X x
  

     
. 

 

Without loss of generality, assume 0n  . By the 

Cauchy-Schwarz inequality and lem1, we have 
 

1
1

1 1 1

( ) ( , ) ( )n
k

j
j

n n nn

k k j A
j Ak k k

P A P A A E I I


   

    
 

1
1

1 1

( ( )) ( ) ( )n
k k

j
j

n n n

A A k j
jAk k

E I E I I P A P A


 

    

1/ 2

1 1

(1 )
( ( )) (1 ) ( )

n n
n

n k n k
k kn

C P A P A
  

  


   

1 1

(1 )1
( ( )) (1 ) ( )

2

n n
n

n k n k
k kn

C P A P A
  

  


    

 
 
Thus, we have  

2

1

( ) (1 )
n

n k n
k

P A C 


 
 

 
i.e.  

2

1 1
1

(1 (max )) ( ) (max )
n

k k k
k n k n

k

P X x P X x CP X x
   



    
 

Lemma 3. (see [10]) Let n{X , n 1}  be a random variable 

sequences, X is a random variable such that 
 

nP ( | X t ) c P ( X | t )   for any 0 , 1t n   
 

Then for any 0  , t 0 , we have 
 

 nn ( t ) X t
E X C E X IXI

 
 

     n X tX t
E X C (E X t P X t )

n
I I

  
   

 

II. WEAK CONVERGENCE AND PROOF 

Theorem 1. Let n{X , n 1} be a sequence of  
-mixing 

random variables,{ }nX X , satisfying  
 

lim  n P ( X n ) 0p

n  
  for 1 / 2p                      (1) 

 
Then         

           
 X

1

/ / 0p
i

n
Pp p

n i n
i

S n E X I n




           (2) 

 

Remark 1. Let n{X , n 1}  be a sequence of  
-mixing 

identically distributed random variables (i.d.r.v.), then 
 

 1

1
1 X

/ 0p

Pp p
n n

S n n E X I


                  (3) 

Remark 2. When 1p  and n{X , n 1} i.i.d, then 
Theorem 1 is the weak law of large numbers due to Feller. So 

theorem 1 extends Feller's weak law of large numbers to a  

-mixing setting. 

Proof: Let (|X | n )
Y X I p

i
i i 
 ,for 1 i n  and

'

1

n

n i
i

S Y


  . Then, for each 2n  , { , 1}iY i   are  

-mixing r.v.s. and for every 0   
 

' '

1
P ( ) P ( ) P ( ( )

n
n n n n

i ip p p p
i

S S S S
X Y

n n n n



     

 

1

( ) P ( ) 0
n

p p
i

i

P X n C n X n


    
 

 

due to (1). So that (1) entails
'

0Pn n
p p

S S

n n
  . Thus to prove 

(2), it suffices to verify that  
 

 
'

X
1

/ / 0,p
i

n
Pp p

n i n
i

S n EX I n n




        (4) 

 
By the Toeplity Lemma and (1), we have  
 

2 2

1

2 2

1

( )
0,

n
p p

k
n

p

j

k kP X k
n

j










  




 

 

With this and 2 2 2 1

1

( )
n

p p

j

j O n 



 for 1 / 2p  , we have 

 

2 1 2 1

1

( ) 0,
n

p p p

k

n k P X k n  



  
 

 
which, in conjunction with Lemma 1 and Lemma 3 for every 

0  , 
 

' ' 2 ' ' 2 2 2

1

P( ) ( ) ( ( ))
n

p p p
n n n n j j

j

S ES n Cn E S ES Cn E Y EY  



     
2 2 2 2

( )
1 1

( ) p
j

n n
p p

j j j X n
j j

C n E Y E Y C n E X I 


 

   
 

22 2

( )
1

( ( ) )p

n
p p p

X n
j

C n E X I n P X n




  
22 1

(( 1 ) )
1

( )p p

n
p p

k X k
k

C n E X I C n P X n 
  



  
2 1 2 1

1

[ ( ) 1] ( ) 0
n

p p p p

k

C n k P X k C n P X n  



     
 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:2, 2015

125

 

 

Thus      

 
' ' '

X
1

/ / / / 0p
i

n
Pp p p p

n n n i n
i

S n ES n S n EX I n




   
 

 
i.e. (4) holds. 

III. COMPLETE CONVERGENCE  

Definition 3. A function ( ) 0l x  ( 0)x  is said to be a 

slowly varying function if for any 0c  , lim ( ) / ( ) 1
x

l cx l x


  

Lemma 4. (see [11]) Let ( )l x be a slowly varying function, 
then 

(i). 
12 2

lim sup ( ) / (2 ) 1
k k

k

k x

l x l
  

  

(ii). For any 0r  , 0   and any natural number k , there 

exist constants 1 2, 0c c  such that 
 

1 2
1

2 (2 ) 2 (2 ) 2 (2 )
k

kr k jr j kr k

j

c l l c l  


 
 

 

(iii). For any 0r  , 0  and any natural number k ,there 

exist constants 1 2, 0d d  such that 
 

1 22 (2 ) 2 (2 ) 2 (2 )kr k jr j kr k

j k

d l l d l  




 
 

 

Theorem 2. Let n{X , n 1}  be a sequence of  
-mixing 

i.d.r.v.s. and ( )l x  be a slowly varying function. Then for 

0 2p  , 1p   and 1 0EX  , the following statements 

are equivalent  
 

1/

1 1( ( ))
p

E X l X
  

                                           (5) 
 

2

1
1

( ) (max ) , 0p
j

j n
n

n l n P S n  




 

    
     (6) 

 

Remark 3. When ( ) 1l x  and n{X , n 1} i.i.d., then 
Theorem 2 becomes the Baum and Katz complete convergence 
theorem. So theorem 4 extends and improves the Baum and 

Katz complete convergence theorem for i.i.d.r.v.s to a  

-mixing i.d.r.v.s. 

Proof:    5 6 Let (|X | n )
Y X I

i
i i 
 . We have  

 

1
1

m ax 0
j

i
j n

i

n E Y

 


 n                             (7) 

    

So, 0  ,as n  large enough, we have   
    

1
1

m ax
2

j

i
j n

i

n
E Y


 




1 2

j

i
i

n
E Y





 

 
Thus  

1
{max | S |   n }j

j n


 


 

1
{max | | , :1 ,| | }j i

j n
S n i i n X n 

 
     

 

1
 {max | | , :1 ,| | }j i

j n
S n i i n X n 

 
       

1
11

{| | }  {max | }
jn

i i
j n

ii

X n Y n 
 



     

1
11

{| | }  {max ( ) | / 2}
jn

i i i
j n

ii

X n Y EY n 
 



      

 
Without loss of generality, to prove (6), it suffices to prove 

that 
 

2

1 1

(n)P ( {| | })  
n

p
i

n i

n l X n 




 

   
                     (8) 

 

2

1
1 1

(n)P (max ( ) )  
j

p
i i

j n
n i

n l Y EY n 




 
 

      (9) 

 
By Lemma 4 and (5), it is easy to see that 
 

2 1
1

1 11

(n)P( {| | }) (n)P(| | )
n

p p
i

n ni

n l X n n l X n   
 

 

 

   

 
1

1
1

1 2 2

(n)P(| | )
j j

p

j n

n l X n 






  

  
     

( 1)
1

1

2 2 (2 )P(| | 2 )j p j j j

j

C l X 






 
( 1)

1
1

2 (2 ) P(2 | | 2 )j p j k k

j k j

C l X  
 



 

   
( 1)

1
1

2 (2 )P(2 | | 2 )k p k k k

k

C l X  






  
1/

1 1( ( ))
p

CE X l X
  

i.e.  (8)   holds. 
 
By the Lemma 1, Lemma 4, Markov inequality and (5), we 

obtain that 

2

1
1 1

(n)P (max ( ) )
j

p
i i

j n
n i

n l Y EY n 




  

    

2 2 2

1 1

(n) ( )
n

p
i i

n i

C n l E Y EY 


 

 

    
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1

1 2 2
1 ( )

1

(n)p

X n
n

C n l EX I 
 


 




 

11

1 2 2
1 ( )

1 2 2

(n)
j j

p

X n
j n

C n l EX I 
 




 


  

  

1

( 2) 2
1 ( 2 )

1

2 (2 ) j

j p j

X
j

C l EX I 








 

( !)
1

( 2) 2
1 (2 2 )

1 1

2 (2 ) k k

j
j p j

X
j k

C l EX I  







 
 

  

( !)
1

( 2) 2
1 (2 2 )

1

2 (2 ) k k

j p j

X
k j k

C l EX I  




 


 
 

 
1/

1 1( ( ))
p

CE X l X
  

. 

   6 5
 

 
Obviously, (6) implies that 
 

2

1
1

( ) ( m a x )p
k

k n
n

n l n P X n 




 

  
        (10) 

 

Noting 2 1 0p    , we have 
 

1

( 1)

11 21 1 2 2

1
(max 2 ) (max )

m
m m

m
j j

j njm m n

P X C P X n
n

  


 


     

    
 

1
1

1
( m a x )j

j n
n

C P X n
n



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2

1
1

( ) (max )p
j

j n
n

C n l n P X n 




 

   
 

 
Thus 

( 1)

2 ( 1)

12 2 1 2
max (max 2 ) (max 2 ) 0

m m m

m
j j

j nn j
P X n P X   





    
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Therefore, for n sufficiently large, we have 
 

1

1
( m ax 2 )

2j
j n

P X n 
 

 
 

 
By lemma 2, we have   
 

2 2

1
1

( 2 ) 4 (m ax 2 )
n

k j
j n

k

P X n C P X n    
 

  
 

 
In conjunction with (10), we get 

1 2
1

1

( ) ( 2 ) , 0p

n

n l n P X n   





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Thus by Lemma 4, we finally have 
 

1 2
1

1

( ) ( 2 )p

n

n l n P X n  






  
 

1

1 2
1

1 2 2

( ) ( 2 )
j j

p

j n

n l n P X n  





  

  
 

( 1)
1 0

1

2 (2 ) ( 2 2 2 )j p j j j

j

C l P X    






  �
 

( 1)
0 1 0

1

2 (2 ) ( 2 2 )j p j k k

j k j

C l P X   
 



 

   
( 1 )

0 1 0
1 1

2 ( 2 ) ( 2 2 )
k

j p j k k

k j

C l P X   




 

   
 

( 1 )
0 1 0

1

2 ( 2 ) ( 2 2 )k p k k k

k

C l P X   






  
 

1/

1 1( ( ))
p

CE X l X


 
 

It completes the proof of Theorem 2. 
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