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Abstract—In recent years, multi-antenna techniques are being 
considered as a potential solution to increase the flow of future 

wireless communication systems. The objective of this article is to 

study the emission and reception system MIMO (Multiple Input 

Multiple Output), and present the different reception decoding 

techniques. First we will present the least complex technical, linear 

receivers such as the zero forcing equalizer (ZF) and minimum mean 

squared error (MMSE). Then a nonlinear technique called ordered 

successive cancellation of interferences (OSIC) and the optimal 

detector based on the maximum likelihood criterion (ML), finally, we 

simulate the associated decoding algorithms for MIMO system such 

as ZF, MMSE, OSIC and ML, thus a comparison of performance of 

these algorithms in MIMO context. 

 

Keywords—Multiple Input Multiple Outputs (MIMO), ZF, 
MMSE, Ordered Interference Successive Cancellation (OSIC), ML, 

Interference Successive Cancellation (SIC). 

I.INTRODUCTION 

OMMUNICATION systems comprise three fundamental 

elements: transmitter, channel, and receiver. When 

signals are transmitted through a communications system, they 

are obstructed by some distortions that are mainly inter-

symbol interference (ISI) and noise [20]. The transmitted 

signal is distorted by ISI which is caused by multipath effect 

in a band limited (frequency selective) time dispersive 

channels and is the cause of bit errors on the receiver side 

[19]. ISI considers the main factor as negatively affecting the 

fast transmission of data over wireless channels. To eliminate 

or minimize these distortions, equalizers are employed in these 

systems. Equalization is the method of compensating for, 

eliminating or reducing the amplitude and phase distortion 

introduced by the transmission medium in communications 

systems. In a general meaning, the term equalization refers to 

any signal processing operation which minimizes ISI. 

Equalization techniques can be categorized into linear or 

nonlinear techniques depending on the way the output of an 

adaptive equalizer is used for subsequent control of the 

equalizer [18]. The decision making device of the receiver 

processes the equalizer’s output and determines the value of 

the digital data bit being received before applying a slicing or 

thresholding operation (a nonlinear operation) to determine the 

value of the reconstructed message data. If this data is not 

used in the feedback path for the adapting of the equalizer, it is 
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a linear type of equalization, but on the other hand, if the 

decision making device feeds the reconstructed data back in 

order to alter the equalizer’s subsequent outputs, the 

equalization is nonlinear [17]. MIMO transmissions were 

designed in 1996 by Bell Lab [10] to increase the channel 

capacity. This type of transmission uses multiple transmit 

antennas and multiple reception antennas in order to convey a 

message. At the reception many decoding techniques receptor 

[7] have been proposed, such as zero-forcing equalizer or 

maximum likelihood decoder (ML) [6]… This paper aims to 

familiarize themselves with MIMO and reception decoding 

techniques associated with them. The simulations of decoding 

algorithms with MIMO system [3] are presented. 

II. MIMO SYSTEM MODEL 

In the MIMO system that employs multiple antennas in the 

transmitter and/or receiver, the correlation between transmit 

and receive antenna is an important aspect of the MIMO 

channel [4]. We consider a MIMO system [1] along with Nt 

transmitters and Nr receivers (Fig. 1). It is assumed that the 

transmission channel is frequency selective and non-selective 

in time, so coefficient��� represents the path between the 
m
eme
 transmitting antenna and the n

eme
 receiving antenna [8]. 

 

 

Fig. 1 MIMO transmission system 

 

We call ��(�) the transmitted signal on the meme
 antenna at 

time k, the received symbol on the n
eme
 antenna [9] is then: 

 �	(
) = ∑ ℎ	���(
) +	�	(
)	����� 	              (1) 
 

where bn is an additive white noise. Considering all of the 

signals received simultaneously, the refer to (1) can be written 

in matrix form dimension Nt×Nr: 

 �(
) = ��(
) + 	�(
)                          (2) 
 

with 

� = � ℎ�� … ℎ���⋮ ⋱ ⋮ℎ��� … ℎ����
�, � = (�� … ���)� 

� = (�� …���)�, � = (�� …���)� 
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The MIMO channel capacity is now given by a sum of the 

capacities of the virtual SISO channels, that is, 

 

� = ∑ � (! ) = ∑ "#$% &1 + ()*+�,�- λ/0� ��� �� 																(3) 
 

The capacity in (3) can be maximized by solving the 

following power allocation problem: 

 

� = 12�3
4*+5

∑ "#$% &1 + ()*+�,�- λ/0� �                        (4) 

 

subject to ∑ ! = 6�� �� . It can be shown that a solution to the 

optimization problem in (4) is given as: 

 

! 78� = &9 − �,�-();< 0
= , ? = 1,… , @                  (5) 

 ∑ ! #AB = 6�																																					� �� (6) 

 

where 9	is a constant, CD  is the energy of the transmitted 
signals, and 6E is the power spectral density of the additive 
noise F4� 5 ���G F.  

III.DECODING ALGORITHMS ASSOCIATED WITH MIMO 

TECHNIQUES RECEPTION [5] 

This section presents the different decoding techniques in 

linear reception such as zero forcing equalizer (ZF) and 

minimum mean squared error (MMSE), and nonlinear regards 

ordered successive interferences cancellation (SIC) and the 

maximum likelihood (ML) [2]. 

A. Zero-Forcing Equalizer (ZF) 

Zero Forcing refers to a technique of linear equalization 

algorithm used in the world of telecommunications that 

involves inverse of the frequency response of a particular 

channel [21]. The zero forcing equalizer is a detection 

technique by matrix inversion. This technique consists in 

applying to the received vector an equalization matrix W. ZF 

criterion was proposed to eliminate the SIC of the output of 

the equalizer. The matrix W is equal to the pseudo-inverse of 

the channel matrix [13] which is written by: 

 H = (�I�)J��I                            (7) 
B. Minimum Mean Square Error Equalizer (MMSE) 

In telecommunication, a Minimum Mean Square Error 

(MMSE) estimator is an estimator which follows an 

estimation method, through which it minimizes the mean 

square error for the fitted values of various dependent 

variables. The method MMSE more closely refers to the 

estimation of a quadratic cost function in Bayesian setting. 

The thinking procedure behind this Bayesian approach is to 

estimate stems from various practical conditions where we 

sometimes have some major information about the parameters 

that are required to be estimated. MMSE receiver holds back 

both interference as well as noise components, but as far as the 

ZF receiver is a concern, it only eliminates the interference or 

the noise. From this, we can conclude that the Mean Square 

Error (MSE) is minimized. To overcome the drawback of 

noise enhancement of ZF, the concept of MMSE is introduced. 

So, we can say that MMSE is pretentious to ZF in the presence 

of noise and interference. Now the Linear Minimum Mean 

Square Estimator for the MIMO System is [21]. 

 �K = LM�I(�I + N	%)J��                            (8) 
 

where LM is the power of each diagonal element, and  N	% is the 
power of noise component. The MMSE equalizer is based on 

minimizing of the mean squared error: 
 

                  HO = 2@$minS CT‖HI� − �‖%V                    (9) 
 

The optimal equalization matrix is then given by:    

                                    

                      H = �I &WXYW)Y Z�� + ��I0J�
                          (10) 

 

Avec CT��IV = N[%6�� et T��IV = ND%Z��. In the presence of 
noise, the matrix to be inverted is always defined positive and 

therefore invertible. 

C. Ordered Interference Successive Cancellations (OSIC) of 

Equalizer [12] 

ZF and MMSE equalizers are not always satisfactory: The 

first is sensitive to noise and the second does not remove any 

ISI. Thus, Golden and Foschini proposed in [5], [11] an 

algorithm based on a ZF or MMSE criterion decision feedback 

[15] to decode the BLAST codes [7]. The principle of this 

algorithm called OSIC is: the contribution of the symbol \ 
which has just been detected is subtracted from the received 

vector, which yields a vector containing less interference. The 

transmitted symbol on the data path having the strongest 

power is decoded first. After decoded, its contribution is 

canceled on the received vector; the operation is repeated for 

all transmitted symbols. The transmitted symbol on the data 

path having the strongest power is first decoded. After 

decoded, its contribution is canceled on the received vector; 

the operation is repeated until all the symbols transmitted. The 

following algorithm: 

 

Initialization ?	 = 	1	]� 	= 	�^ 
� = arg1?bc‖(]�)‖% 

Iterative Loop Hd = (] )d  @d = ed � @  �Kd = f(�d ) � =� = � − �Kd (�)d  ] =� = (�d J )^ 


 =� = arg1?bc∉4d�,…,d 5h(] =�)ch%
 ? = ? + 1 

 

This algorithm uses the following notations: 

� (ij)c is the jeme line from	ij. 
� The kj represent the symbols of the detection order. 
� l symbolizes the quantization process. 
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� mkjJ  is the channel matrix m cancel the contributions of 
the kj first transmitter.  

Like all decision feedback equalizers [16], OSIC has the 

disadvantage of propagating errors. 

D.  Maximum Likelihood (ML) Equalizer  

Here, we develop the maximum likelihood equalization 

procedure for isolated word recognition [2]. However, it is 

general enough and can be used for continuous speech 

recognition employing sub-word units [24]. We use here the 

cepstral coefficients derived through linear prediction analysis 

as recognition features [22]. Let the input utterance to be 

recognized be represented by a sequence of observation 

(cepstral) vectors,� = 4��, �% , … , ��5, where T is the number 
of frames in the input utterance. Since this utterance is spoken 

under adverse conditions, it is distorted. Our aim here is to 

clean up this distortion. For this, we transform each vector of 

this utterance such that the likelihood function is minimized. 

Let no denote the transformation (parameterized in terms of a 
parameter vector p), and � = 4��, �%, … , ��5 the observation 
sequence after transformation. Then: 
 �� =	no(��) ,   for   1 ≤ B ≤ r                    (11) 

 

Our goal is to find this transformation such that it 

maximizes the likelihood function under the HMM framework 

[23]. For finding this transformation, consider a continuous 

density HMM s = T6, t, u, vV, where N= the number of states 
in the model, t = 4t , 1 ≤ ? ≤ 65, the initial state probability 
vector (t  is the probability that the model is in state i 

initially), u = 42 c , 1 ≤ ?, w ≤ 65, the transition matrix of 
underlying Markov chain (2 c is the probability of transition 
from stat i to state j) [24], and v = 4�c(��), 1 ≤ w ≤ 65, the 
output probability matrix. Here �c(��)	 is the probability of 
outputting the vector �� when the model is in state j. In our 
study, we represent �c(��) as a mixture of M normal 
probability density functions (PDFs), i.e., 

 

�c(��) = ∑ �cdxd�� 6y��, 9cd,, Ncdz = ∑ {|}
T(%~)� Y� ∏ W|}+�+�� Vxd��  (12) 

 

where d is the number of features in an observation (cepstral) 

vector, �cd  is the mixture weight of k-th mixture of j-th state, 

and 9cd, and Ncd  are the mean and standard deviation vectors, 
respectively, of j-th state and k-th mixture. Note that we use 

here only diagonal covariance matrices (i.e., we assume off-

diagonal elements to be zero).The transformation no is 
estimated by the maximum likelihood formulation in two 

steps: segmentation and maximization. In the segmentation 

stage, the model s is assumed to be known and the Viterbi 
algorithm is used to segment the observation sequence into 

states. Let the state sequence be given by: 

 ��� = 4��, �%, … , ��5 
 

In the maximization stage, the transformation is obtained by 

maximizing the likelihood function which is expressed as the 

probability of the sequence � given the model and state 
sequence and is written as: 

 L(�|��� , s) = ∏ ���(��)����                      (13) 

 

Let us denote �B by j. Then, the log-likelihood of the 

sequence � is: 
 

                      �y�|�1r, sz = log	(Ly�|�1r, sz)                      (14) 
 �(�|��� , s) = ∑ log	(�c(��))����                    (15) 

 

By substituting the value of �� from (11) into (15), we get 
the likelihood function in terms of the transformation no. In 
order to solve for this transformation, we consider two cases. 

In case 1, we assume that the functional form of the 

transformation is known and, it is represented in terms of a 

few parameters. For example, we know that the additive noise 

introduces multiplicative distortion in the cepstral vector. This 

means that �� = ���, where � is a constant for a given 
utterance whose value depends on the amount of additive 

noise distortion. Similarly, we know that the channel 

mismatch distortion becomes additive in the cepstral domain. 

This means that �� = �� − v, where B is the bias vector which 
remains constant for the input utterance. The parameters of 

this transformation can be computed by minimizing the 

likelihood function (15). In case 2, we do not know the 

functional form of the transformation. In this case, we use a 

multilayer perceptron to approximate this transformation. Note 

that the multilayer perceptron can provide nonlinear 

transformation. The connection weights of the multilayer 

perceptron can be estimated by the back-propagation 

algorithm using the likelihood function (15) as the cost 

function. Note that in this procedure we compute the 

transformation for each input utterance we recognize. This 

may be computationally expensive in some applications. For 

this, we suggest an alternate way where we provide a small 

amount of calibration speech to the recognizer before its use to 

compute the transformation for a given adverse environment. 

Once we have learnt this transformation, we can use the 

recognizer with this transformation as long as our 

environmental condition does not change. In the present paper, 

we assume this transformation to be linear and it is 

characterized by an additive bias vector B in the cepstral 

domain; i.e., 

 �� = �� − v                                       (16) 
 

The bias B is obtained by maximizing the following log-

likelihood function: 

 �(�|��� , s) = ∑ log	T∑ �c�x��� 6y�� − v, 9c�, Nc�zV����    (17) 

 

where j denotes state qt, and observation probability from this 

state is given by the weighted sum of M Gaussian mixtures. 

The k-th component of bias vector B, obtained from this 

maximization, is given by: 
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vd = ∑ ∑ �*|��(��}J�|�}) W|�}Y� �����,���
∑ ∑ �*|�� W|�}Y⁄ �����,���                 (18) 

 

where  

!c�� = {|��y��,�|�,W|�z
∑ {|����� �y��,�|�,W|�z                         (19) 

 

Thus, the ML equalizer is optimal in terms of BER [14]. This 

method consists of comparing all signals can be received with 

the actual received signals; to select the most likely of them 

we use the following equation: 
 

                           �K = 2@$1?b‖� − ��‖%                       (20) 
 

The complexity of this algorithm grows exponentially with 

the number of antennas, used in transmission, and the number 

of states � of the modulation [9]. In fact, the receiver has to 
compare ��� possible solutions with the vector of received 
signals. 

IV.SIMULATION RESULTS 

A. MIMO System Performance 

In the simulation we test the MIMO system performance 

with respect to the number of antennas by calculate the 

ergodic capacity according to SNR for a MIMO system, 

SIMO, MISO and SISO system, with application of Rayleigh 

channel [14]. 

 

 

Fig. 2 The capacity of the MIMO system antennas of 5 x 5 in function of the SNR values 

  

 

Fig. 3 The capacity of the MIMO system antennas of 6 x 6 in function of the SNR values 
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Fig. 4 The capacity of the MIMO system antennas of 10 x 10 in function of the SNR values 

 

 

Fig. 5 The capacity of the MIMO system according to the number of antennas with SNR = 60 dB 

 

 

Fig. 6 The capacity of the MIMO system according to the number of antennas with SNR = 80 dB 
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From the result, we note that MIMO capacity increases if 

the numbers antenna is important, with and without noise 

(Figs. 2-4), so the MIMO system is most power of full 

compared to other systems (SISO, SIMO, MISO). Thus, we 

see that MIMO capacity is very high if the number of antennas 

is important to the receiver level, with the value of SNR is 

greater (Figs. 5 and 6). 

B.  In Receive Equalization Algorithms 

With the equalization algorithms, we will calculate the BER 

for BPSK modulation using the Rayleigh channel with the 

MIMO system. The equalization is performed using the ZF, 

MMSE, OSIC and ML  

• MIMO_ZF ALGORITHM: The simulation results shown in 

figure (Fig. 7) demonstrate that the MIMO_ZF algorithm 

equalization is very powerful to equalize the channel if 

the number of reception antennas is important, so it 

reduces the number of errored bit (BER) [14]. 

• MIMO_MMSE ALGORITHM: From Fig. 8, we are 

noted that the BER values are decreased if the number of 

antennas is increased in reception. 

• MIMO_OSIC ALGORITHM: The MIMO_OSIC algorithm 

plays an important role in the 2x5 MIMO system relative 

to the SISO and SIMO systems (1x1 and 1x2), to equalize 

the channel (Fig. 9). 

• MIMO_ML ALGORITHM: From Fig. 10, we see that the 

number of errored bit is important in the SISO and the 

SIMO system (1x1, 1x2), compared with the MIMO 

(2x5), then this algorithm gives good results equalization 

in the case of number antennas is important in reception 

MIMO system. 

 

 

Fig. 7 Performance of the MIMO_ZF algorithm 

 

 

Fig. 8 Performance of the MIMO_MMSE algorithm 
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Fig. 9 Performance of the MIMO_OSIC algorithm 

 

 

Fig. 10 Performance of the MIMO_ML algorithm 

C.Comparison Results 

 

Fig. 11 Comparison of Performance algorithms equalization with MIMO (2x4) 

 

From the simulation result equalization algorithms 

reception in MIMO (2x4), we see that the MIMO_ML 

equalization algorithm is stronger than other algorithms to 

decrease errored bits that are transmitted to the channel (Fig. 

11). 
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V.CONCLUSION 

In this paper we have studied the equalization MIMO 

system, the equalizations at reception is performed using the: 

zero-forcing (ZF), minimum mean square error (MMSE), 

ordinate successive interference cancellation (OSIC) and the 

maximum likelihood (ML) Equalizer. The simulation results 

show that the MIMO system has a large transmission capacity 

than SISO, SIMO and MISO system, or the MIMO capacity is 

very high if the number of antennas is important to the 

receiver level, with the value of SNR is greater. The 

equalization algorithms give good results if the number of 

antennas is important in MIMO system reception. Thus ML 

equalization algorithm is very powerful than MMSE, OSIC 

and ZF, for the MIMO equalization system. 
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