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 
Abstract—In this paper, the goal programming methodology for 

solving multiple objective problem of the technological variants and 
production plan optimization has been applied. The optimization 
criteria are determined and the multiple objective linear programming 
model for solving a problem of the technological variants and 
production plan optimization is formed and solved. Then the obtained 
results are analysed. The obtained results point out to the possibility 
of efficient application of the goal programming methodology in 
solving the problem of the technological variants and production plan 
optimization. The paper points out on the advantages of the 
application of the goal programming methodology compare to the 
Surrogat Worth Trade-off method in solving this problem.  

 
Keywords—Goal programming, multi objective programming, 

production plan, SWT method, technological variants. 

I. INTRODUCTION 

RODUCTION plan and technological variants 
optimization is one of the most important problems which 

are facing manufacturing companies. By its nature production 
plan and technological variants optimization is a multi-
objective problem for which solving we should apply multi 
objective programming methods.  

However, many methods for solving multi-objective 
programming problems are proposed. The proposed multi-
objective programming methods differ in efficiency from the 
perspective of decision makers and analysts. Some methods 
are universal and some are designed for specific multi-
objective programming problems solving. The first major 
review of multiple objective programming methods is given in 
[1].  

Goal programming which was originally presented in [2] is 
one of the most important methods for solving multi-objective 
programming problems. This method has been improved in 
[3]-[5]. In addition there are many variants of goal 
programming methods which are all based on the 
abovementioned papers. References [6] and [7] propose an 
impressive list of papers which introduce or apply goal 
programming.  

In this paper we apply goal programming methods in 
solving the problem of production plan and technological 
variants optimization.  
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The paper besides an introduction, conclusion and list of 
literature contains three chapters: goal programming 
methodology, solving a specific problem of the production 
plan and technological variants optimization using goal 
programming and analysis of the optimal solutions. 

II. GOAL PROGRAMMING METHODOLOGY 

A. Multiple Objective Linear Programming Model 

The multi-objective linear programming model can be 
presented as 
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 s.t.   ,Ax b                   (2) 

 
0,x                                          (3) 

 
where x is an n – dimensional vector of decision variables, z1, 
z2, …, zK are linear objective functions, A is a m x n 
dimensional matrix of constraint coefficients, while b is a m – 
dimensional vector of constraint values. 

By solving the model (1) - (3) one or more nondominated 
(efficient) solutions are obtained. Nondominated solution that 
is accepted by the decision maker is called the preferred 
solution. 

B. Goal Programming Method 

To solve the model (1)–(3) by the goal programming 
method we have to find marginal solutions for all the objective 
functions in the given constraints set with objective function 

values: * * *
1 2, ,..., .kz z z  After that we form the goal programming 

model in one of the five possible ways [7]-[9]:  

(i) The Min – Max Form 

Min max gk(nk, pk)    (4) 
 

s.t. 
1

,  1,2,...,
n

kkj j k k
j

c x n p Z k K


     (5) 

 

1

, 1,2,...,
n

ij j i
j

a x b i m


    (6) 

 
xj 0, nk 0, pk 0, nk  pk = 0, k = 1, 2, …, K.         (7) 
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Aspiration level Z is determined by the decision maker or is 
equal to Z*. 

(ii) The Minimization of the Sum of Deviations Form 

Min 
1

( , )
K

k k k
k

g n p

    (8) 

 
s.t. constraints (5) – (7)  (9) 

(iii) The Minimization of the Weighted Sum of Deviations 
Form 

Min 
1

( , )
K

k k k k
k

w g n p

                        (10) 

 
s.t.  constraints (5) – (7),                    (11) 

 
where wk (k = 1, 2, …, K) are weights determined by the 
decision maker. 

(iv) The Min-Max Weighted Form 

Min max gk(wknk, wkpk)                        (12) 
 

s.t. constraints (5) – (7),                         (13) 
 

where wk (k = 1, 2, …, K) are weights determined by the 
decision maker. 

(v) The Preemptive Priority Form:  

In this form the K objectives are rearranged according to 
decision maker’s priority levels, the highest priority goal is 
considered first, then the second and so on. The general 
lexicographical goal program is: 

 

Min ( , ) :  1,2,...,
i

k k k k
k P

w g n p i I


   
  
   (14) 

 
s.t.  constraints (5) – (7),   (15) 

 
where I is the number of priority levels and kPi means that 
the kth goal is in the ith priority level. 

Models (i), (ii), (iii), (iv), and (v) are linear programming 
models which can be solved by the simplex method.  

III. PRODUCTION PLAN AND TECHNOLOGICAL VARIANTS 

PROBLEM 

In the following sections we present problem of production 
program and technological variants determination in a metal 
processing company. The data are taken from [10].  

A. Production Plan and Technological Variants Data 

For the current year January – December period the 
company is to produce, in addition to single products made to 
order, 11 different products marked by numbers from 1 to 11. 

Net sale price and net-profit per product made by a 
particular technological variant are shown in Table I. 

Technological variants represent different ways to produce 
the same product. In our example the variant U-7 presents 
production by a special machine requiring high participation 

of labour, while by the variant NC-A the production is 
completely automated with the minimal participation of 
workforce.  

 
TABLE I 

NET SALE PRICE AND NET-PROFIT PER PRODUCT [10] 

Product 
xi 

Net sale 
price 
cig3

Net-profit  -   cig1 

Var. U-7 Var. U-11 Var. NC-P Var. NC-A 

1 12.80 0.35 - 0.77 0.95 

2 78.00 3.5 - 4.68 - 

3 14.50 0.45 0.57 0.87 1.11 

4 10.80 0.50 0.65 - - 

5 9.81 0.33 0.41 0.59 0.71 

6 13.60 0.51 0.62 0.82 0.99 

7 15.80 0.88 0.95 - - 

8 20.30 1.19 1.22 - - 

9 19.80 0.88 0.95 1.19 - 

10 13.45 0.57 0.68 0.81 0.99 

11 218.50 9.12 10.5 13.11 - 

 
TABLE II 

DIRECT LABOUR REQUIRED AND EQUIVALENCY COEFFICIENTS [10] 

Product
xi 

Direct labour required in minutes and  equivalency coefficients – cig2

Var.
U-7

Equiv. 
coeff. 

Var. 
U-11

Equiv. 
coeff. 

Var. 
NC-P 

Equiv. 
coeff. 

Var. 
NC-A 

Equiv. 
coeff. 

1 18 1,28 - 0,00 9 1,80 7 1,40 

2 132 9,43 - 0,00 66 13,2 - 0,0 

3 14 1,00 10 1,00 5 1,00 5 1,0 

4 15 1,07 9 0,90 - 0,00 - 0,0 

5 9 0,64 8 0,80 5 1,00 3 0,6 

6 13 0,93 12 1,20 6 1,20 5 1,0 

7 22 1,57 20 2,00 - 0,00 - 0,0 

8 30 2,14 25 2,50 - 0,00 - 0,0 

9 18 1,28 14 1,40 11 2,20 - 0,0 

10 14 1,00 11 1,10 7 1,40 5 1,0 

11 250 17,8 200 20 145 29 - 0,0 

 
TABLE III 

LATHES OPERATION TIME [10] 

Product 
xi 

Lathes operation time in minutes1 - aig 

Var. U-7 Var. U-11 Var.NC-P Var. NC-A 
1 10 - 6 5 
2 80 - 40 - 
3 8 8 4 4 
4 5 5 - - 
5 4 5 3 2 
6 6,5 6,5 3 3 
7 6 5,5 - - 
8 25 21 - - 
9 6,5 5,8 5 - 
10 12 10 7 5 
11 47 39 30 - 

Available 
capacity - bg 

405000 101000 130460 99490 

 

 
1 The time required to manufacture a product besides turning operation 

includes some other operations (cutting, milling, polishing, heat treatment, 
etc.) Some of these operations are carried out on the lathe depending on the 
type of product and type of lathe. Turning operation on different lathe types 
will be of different grade, which results in additional operations and 
consequently in additional time needed to finish the product. As in this 
process turning is the most important operation the selection of technological 
variants will be carried out with this operation in mind.  
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For production of different products the needed direct 
labour will be different in different technological variants. The 
direct labour required for particular products and variants, and 
equivalency coefficients obtained by division of the necessary 
working time for production of each product by different 
variants with the needed time to produce product 3 (freely 
chosen by the authors) by different variants are shown in 
Table II. 

The turning plant consists of seven U-7 lathes, one U-11 
lathe, two NC-P machines and one NC-A machine. 

The time needed to manufacture one product on these 
machines is shown in Table III. 

The available capacity of particular groups of machines is 
calculated according to the form (in minutes): 

i i i i i i ib p m n s K      , where ib = available capacity of the 

i–lathe group, ip = number of lathes of the i–group, im = 

number of working days in the given period, in = number of 

working hours per shift is = number of shifts per day, i = 

utilization level of the i–lathe group (taking into account the 
waste of time resulting from technological, organisational, 
market and other factors). Based on the analysis of data from 
the previous period it is assumed that the utilization level of 
the U-7 lathe group will be 0.85, while U-11, NC-P i NC-A 
will be 0.95. iK  is the capacity of the i– lathe group intended 

for production to order (single units and small series). Thus:  
 

1 6 242 7.5 1 0.85 60 150390 405000b           

2 1 242 7.5 1 0.95 60 2455 101000b         , 

3 2 242 7.5 1 0.95 60 76450 130460b         , 

4 1 242 7.5 1 0.95 60 3965 99490b         . 
 
In the given period labour is not restricted because in the 

labour market there are a large number of workers with the 
required skills.  

Consumption of the basic material in kilograms needed to 
manufacture single products on particular lathes is shown in 
Table IV. 

 
TABLE IV 

CONSUMPTION OF BASIC MATERIAL IN KILOGRAMS [10] 

Product 
Consumption of basic material in kilograms – qi1g 

Var. U-7 Var. U-11 Var. NC-P Var. NC-A 

1 0,41 - 0,40 0,40 

2 1,75 - 1,70 - 

3 0,35 0,35 0,34 0,34 

4 0,40 0,40 - - 

5 0,49 0,47 0,45 0,44 

6 0,36 0,35 0,35 0,33 

7 0,71 0,69 - - 

8 0,66 0,65 - - 

9 0,42 0,41 0,41 - 

10 0,33 0,31 0,30 0,30 

11 3,15 3,10 3,05 - 

 
In the given period the possibility to purchase the basic 

material is restricted to q1 = 46000 kg. 

There are no restrictions for the purchase of other materials.  
As the products in question are specific and intended for 

limited market segments the company has restricted possibility 
of sale. Consequently, in the subsequent sales plan period the 
maximal sale will be 7500 units of the product 1 (u1); 4500 
units of the product 2 (u2); 14500 units of the product 3 (u3); 
8000 units of the product 4 (u4); 25500 units of the product 5 
(u5); 15500 units of the product 6(u6); 9500 units of the 
product 7 (u7); 4500 units of the product 8 (u8); 8500 units of 
the product 9 (u9); 8500 units of the product 10 (u10) i 4500 
units of the product 11 (u11). 

Based on the above data we will form the model containing 
three objective functions: net-profit, output, and revenues from 
exports. The stated objective functions have to be maximized.  

B. Multi Objective Linear Programming Model 

Technological variants are different ways of producing the 
same product. In our example the variant U-7 represents 
production on a special machine which requires high 
participation of labour in the manufacturing process, while in 
the variant NC-A the manufacturing process is wholly 
automated with minimal participation of labour. 

Let igx  quantity of i–product produced by g - 

technological variant ( 1, ,11;i   1, ,4).g    

Objective functions [10] 

Net-profit: 
 

max z1 = 
11 4

1
1 1

ig ig
i g

c x
 
 ,                         (16) 

 

where 1igc  is net-profit from Table I. 

Output: 
 

max z2 = 
11 4

2
1 1

ig ig
i g

c x
 
 ,                        (17) 

 

where  2igc  are equivalency coefficients from Table II. 

Revenues from exports: 
 

max z3 = 
4

3
1

ig ig
i I g

c x
 
                             (18) 

 

where  3igc  are net sale prices from the Table I, where they are 

the same at any variant. As only some of the products are 
exported, I represents a set of indices of exported products or I 
= {1, 3, 4, 5, 10}. 

It has to be pointed out that some products cannot be 
manufactured by all variants. Thus by the second variant U-11 
the first and the second product cannot be produced, i.e. x12 = 
x22 = 0, which can be easily perceived from the Table I. 

Constraints [10] 

Lathes U-7, U-11, NC-P i NC-A 
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11

1 1
1

405000i i
i

a x


  ,                           (19) 

 
11

2 2
1

101000,i
i

a x


                              (20) 

 
11

3 3
1

130460,i i
i

a x


                             (21) 

 
11

4 4
1

99490,i i
i

a x


                               (22) 

 

where  , ( 1,...,4)iga g   is the lathe operation time in a 

particular variant from Table III. 

Material Capacity: 

As only one material has a limited capacity (t = 1) this 
constraint is obtained from Table IV, where 1i gq  are 

consumption indicators of the basic material from that table. 
 

11 4

1
1 1

46000.i g ig
i g

q x
 

                               (23) 

 
Additional constraints result from market constraints 

depending on the possibility of sale, as explained above, and 
naturally from the non-negativity constraints. 

 
li ≤ xi ≤ ui, ( i = 1,...,11),                          (24) 

 
where 

4

1

i ig

g

x x


 . 

 

0igx 
       

(i = 1,...,11;  g = 1,...,4).                         (25) 

C. Model Solving 

Applying the Lingo software the optimal values of the 
objective functions are obtained. The obtained optimal values 
are presented in Table V. 

From Table V it is obvious that by maximizing 
function 1z  the obtained maximal value for that 

function is significantly different from the value 
when functions 2z  and 3z  are maximized 

respectively. A significant difference in the value of 
particular functions also appears at maximization of 
the other two objective functions.  Consequently, it is 
obvious that the application of linear programming is 
inadequate for determination of the optimal production 
program and selection of optimal technological variants, and 
that it is necessary to apply multi objective linear 
programming. Namely, the company that has to choose one 
solution for realisation is restricted only to optimal (marginal) 

solutions of one of the objective functions, which differ 
significantly, unless the MOLP methods are used. Solving the 
model by the MOLP methods will result in a compromising 
solution that will provide acceptable values for the objective 
functions.  

 
TABLE V 

OPTIMAL (MARGINAL) OBJECTIVE FUNCTION VALUES 

Solu
tion 

Variable values 
Objective function value 

z1 z2 z3 

x1 

x2,1 = 2199, x2,3 = 2074, 
x3,3 = 11877, x3,4 = 

2622, x4,1 = 8000, x6,4 = 
15500, x7,1 = 7347, x9,1 
= 8500, x10,4 = 8500, 
x11,1 = 1910, x11,2 = 

2590 

533344 
(100%) 

203499.76 

(84% od *
2z ) 

410960.50 

(54% od *
3z ) 

x2 

x1,4 =7500, x2,1 = 4254, 
x3,4 = 3872, x4,1 = 8000, 

x5,1 = 4369, x6,4 = 
15500, x7,2 = 9500, x9,1 

= 1112, x9,2 = 7388, 
x11,2 = 151, x11,3 = 4349

510011,59 

(95% od *
1z ) 

241245 
(100%) 

281403,89 

(37% od *
3z ) 

x3 

x11 =7500, x3,1 = 14500, 
x4,1 = 8000, x5,1 = 

25500, x10,1 = 6000, 
x10,2 = 2500 

181585 

(34% od *
1z ) 

156756 

(24% od *
2z ) 

757130 
(100%) 

 
For solving the above model we can use the numerous 

MOLP methods. Here we present the process of the problem 
solving by using goal programming methodology.  

Model Solving by Goal Programming Methods 

For solving the MOLP problem by the goal programming 
methodology we have to form a goal programming model. 
Considering the maximum value of the objective functions in 
Table V, as well as the preferences of the decision maker, we 
form the following goal programming model: 

 

1 2 3min( )d d d                               (26) 
 

     s.t. 
11 4

1 1
1 1

ig ig
i g

c x d 

 

   533344   (27) 

 
11 4

2 2
1 1

ig ig
i g

c x d 

 

   241245   (28) 

 
4

3 3
1 1

ig ig
i g

c x d 

 

   757130,      1,3,4,5,10i      (29) 

 
11

1 1
1

405000i i
i

a x


  , 
11

2 2
1

101000,i
i

a x


   (30) 

 
11

3 3
1

130460,i i
i

a x


  
11

4 4
1

99490,i i
i

a x


   (31) 

 
11 4

1
1 1

46000,i g ig
i g

q x
 

  li ≤ xi ≤ ui, ( i = 1,...,11) (32) 
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     0igx   
 
(i = 1,...,11; g = 1,...,4).   (33) 

 
Since the decision-maker could not provide information on 

the preferred value of the objective functions, we took the 
maximum value of the objective functions as preferred ones. 

Model (26)-(33) is solved by using five different 
approaches of the goal programming methodology [8], [9]: 

(i) The Min – Max Form: 

Model (26)–(33) is solved by using Zimmermann’s 
approach for linear programming problems solving [11], [12]: 

 
min      (34) 

 

s.t. 1d      (35) 
 

      2d     (36) 
 

      3d     (37) 
 

      constraints (27) – (33)  (38) 
 

The obtained solution is presented in Table VI. 
 

TABLE VI 
THE SOLUTION OF THE MODEL (34) – (38) 

Solu
tion 

Variable values 
Objective function value 

z1 z2 z3 

x1,1 

x1,1 = 7500, x2,1 = 2862, x3,1 = 
2838, x3,3 = 8505, x3,4 = 3157, 
x4,1 = 8000, x54 = 22574, x9,2= 

8500,  x10,2 = 157, x10,4 = 8343, 
x11,2 = 1285, x11,3 = 3215, d1

- = 
28705,96, d2

- = 28705,96, d3
- = 

28705,96 

499024.50 209714.80 728425.90 

(ii) The Minimization of the Sum of Deviations Form: 

Min 1 2 3( )d d d       (39) 
 

s.t. constraints (27) – (33)  (40) 
 

The obtained solution is shown in Table VII. 
 

TABLE VII 
THE SOLUTION OF THE MODEL (39) – (40) 

Soluti
on 

Variable values 
Objective function value 

z1 z2 z3 

x1,3 

x1,4 = 7500 x2,1 = 3254, x3,1 = 
13086, x3,4 = 1414, x4,1 = 8000, 
x54 = 25500, x9,2= 3580, x10,2 = 
7433, x10,4 = 1067, x11,2 = 151, 
x11,3 = 4349, d1

- = 37859.65, d2
- 

= 18306.98, d3
- = 0.00 

495484.90 222941.50 757130.00 

(iii) The Minimization of the Weighted Sum of 
Deviations Form: 

Min  1 1 2 2 3 3
1

K

k

w d w d w d  



     (41) 

 
s.t.  constraints (27) – (33),  (42) 

where wk (k = 1, 2, …, K) are weights determined by the 

decision maker 
1

1
K

k
k

w


 
  

 
 .  

For w1 = 0.4, w2 = 0.5 and w3 = 0.1 the following solution is 
obtained: 

 
TABLE VIII 

THE SOLUTION OF THE MODEL (41) – (42) 

Solu
tion 

Variable values 
Objective function value 

z1 z2 z3 

x1,4 

x1,1 = 156,  x1,4 = 7344 x2,1 = 
3093, x3,1 = 14500, x4,1 = 8000, 
x54 = 21585, x9,2= 8500, x10,2 = 
4580, x10,4 = 3920, x11,2 = 151, 
x11,3 = 4349, d1

- = 26703.89, d2
- 

= 15590.02, d3
- = 38407.06 

495484.90 222941.50 757130.00 

(iv) The Min – Max Weighting Form: 

Min        (43) 
 

s.t. 1 1w d       (44) 
 

      2 2w d      (45) 
 

      3 3w d                                   (46) 
 

       constraints (27) – (33),   (47) 
 

where wk (k = 1, 2, …, K) are weights determined by the 
decision maker 

1

1
K

k
k

w


 
  

 
 .  

For w1 = 0.4, w2 = 0.5 and w3 = 0.1 the following solution 
has been obtained: 

 
TABLE IX 

THE SOLUTION OF THE MODEL (43) – (47) 

Solu
tion 

Variable values 
Objective function value 

z1 z2 z3 

x1 

x1,1 = 7500, x2,1 = 2798, x3,1 = 
8268, x3,3 = 515, x3,4 = 5717, 

x4,1 = 8000, x5,4 = 17620, x6,4 = 
6814, x9,2= 8500, x10,2 = 4312, 
x10,4 = 4188, x11,2 = 220, x11,3 = 

4280, d1
- = 19236.25, d2

- = 
15461.00, d3

- = 77305.01,   
= 7730.50 

514014.20 225782.30 679827.20 

 
For w1 = 0.5 w2 = 0.3 and w3 = 0.2 the following solution 

has been obtained: 
 

TABLE X 
THE SOLUTION OF THE MODEL (43) – (47) 

Solu
tion 

Variable values 
Objective function value 

f1 f2 f3 

x1 

x1,1 = 6270, x1,4 = 1230, x2,1 = 
3552, x3,3 = 11707, x3,4 = 2793, 
x4,1 = 8000, x5,4 = 19834, x9,2= 
8500, x10,2 = 8500, x11,1 = 387, 
x11,2 = 1326, x11,3 = 2788, d1

- = 
22232.61, d2

- = 28383.45, d3
- = 

55581.54,  

511170.80 212887.2 701546.5 
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For w1 = 0.2 w2 = 0.5 and w3 = 0.3 the following solution 
has been obtained: 

 
TABLE XI 

THE SOLUTION OF THE MODEL (43) – (47) 

Solu
tion 

Variable values 
Objective function values 

z1 z2 z3 

x1 

x1,1 = 12, x1,4 = 7488, x2,1 = 3111, x3,1 

= 14500, x4,1 = 8000, x5,2 = 12983, 
x5,4 = 9775, x7.2 = 1533, x9,2= 3751, 

x10,4 = 8500, x11,2 = 151, x11,3 = 4349, 
d1

- = 40360.30, d2
- = 16144.12, d3

- = 
26906.86,  

492986.5 225105.1 730231.0 

(v) The Pre-Emptive Priority Form: 

The decision maker has ranked the objectives according to 
their priority, then the lexicographical form of goal 
programming can be used. In this form the K objectives are 
rearranged according to their priority levels, the highest 
priority goal is considered first, then the second and so on [8] 

In our case z1 has level 1, z2 level 2, and z3 level 3. 
First, the following model is solved: 
 

Max z1 = 
11 4

1
1 1

ig ig
i g

c x
 
    (48) 

 
s. t. constraints (30) – (33)   (49) 

 
The following solution has been obtained: 

 
TABLE XII 

THE SOLUTION OF THE MODEL (48) – (49) 

Solu
tion 

Variable values 
Objective function value 

z1 z2 z3 

x1 

x2,1 = 2199, x2,3 = 2074, x3,3 = 
11877, x3,4 = 2622, x4,1 = 8000, 
x6,4 = 15500, x7,1 =7347, x9,1 = 
8500, x10,4 =8500, x11,1 = 1910, 

x11,2 = 2590 

533344.00 203499,76 410960,50 

 
TABLE XIII 

THE SOLUTION OF THE MODEL (50) – (52) 

Solu
tion 

Variable values 
Objective function value 

z1 z2 z3 

x1 

x1,4 = 7488 x2,1 = 3467, x3,1 = 
10047, x3,4 = 3888, x4,1 =8000, 
x6,4 =15500, x7,2 = 9500, x9,1 = 
1112, x9,2 = 7388, x11,2 = 151, 

x11,3 = 4349 

520000.00 241079.60 384303.90 

 
The decision maker has reduced the acceptable level of the 

objective function z1 to allow an increase in the value of the 
functions z2 and z3. Now the acceptable level of the function z1 
is 510000.00. Then the following model is solved: 

 

max z2 = 
11 4

2
1 1

ig ig
i g

c x
 
    (50) 

 

s. t. 
11 4

1
1 1

520000ig ig
i g

c x
 

   (51) 

 
       constraints (30) – (33)  (52) 

The following solution has been obtained: 
The decision maker has reduced the acceptable level of the 

objective function z2 to allow an increase in the value of the 
function z3. Now the acceptable level of the function z2 is 
230000. Then the following model is solved: 

 

max
4

3
1 1

ig ig
i g

c x
 
       1,3,4,5,10i               (53) 

 

s. t. 
11 4

1
1 1

520000ig ig
i g

c x
 

                      (54) 

 

      
11 4

2
1 1

230000ig ig
i g

c x
 

                       (55) 

 
       constraints (30) – (33).   (56) 

 
The obtained solution is presented in Table XIV. 

 
TABLE XIV 

THE SOLUTION OF THE MODEL (53) – (56) 

Solu
tion 

Variable values 
Objective function value 

z1 z2 z3 

x1 

x1,1 = 5240, x1,4 = 2260 x2,1 = 
2457, x3,1 = 14500, x4,1 =8000, x5,4 
= 11483, x6,2 = 5635, x7,2 = 1565, 
x9,2 = 8500, x10,4 = 8500, x11,2 = 

151, x11,3 = 4349 

520000.00 230000 619623.20 

D. Analysis of the Obtained Solutions 

From the previous tables we can see that generally goal 
programming techniques give more various solutions. Five 
different goal programming techniques are presented above. 
Which goal programming technique is appropriate for the 
decision maker? The answer to the question is not simple. It 
depends on the information which the decision maker can give 
to the analyst. If the decision maker cannot give any 
information about objective function acceptable values or their 
importance expressed in weights, then the min – max form is 
the best for him. However, if the decision maker can give 
information about acceptable values of objective function 
and/or information about relative importance of the objective 
functions, then he can use one of the rest goal programming 
techniques. We prefer the min – max weighting sum because it 
always gives solution which expresses the relative importance 
of the objective function for the decision maker. It is clear 
from the solutions presented in Tables VIII-X.  

If the decision maker can order the objective functions by 
their importance, and give the information about acceptable 
value of the objective functions, then the decision maker can 
use the preemptive goal programming technique in 
determining his preferred solution. 

Now we compare the goal programming approaches with 
Surrogat Worth Trade-off (SWT) method, which was applied 
in solving the same problem [10]. 

SWT method requires forming the SWT function ljw  which 

ensures interaction between the decision-maker and the model. 
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ljw  represents the worth of decision-maker’s estimation of 

how much (on a scale of, say, from -10 to +10, with zero 
denoting equal preference) he/she prefers trading-off lj  

percentages of marginal units of the l - objective function lz  

for one percentage of the marginal unit of j - objective 

function jz , whereby the worth of other objective functions is 

not changed. ljw  is defined as: 

 wij > 0,  when lj  marginal percentages of ( )lz x  are 

preferred to one marginal percentage of ( )jz x , whereby 

all objectives are satisfied on the level j , 1, ,j k  . 

 wij = 0, when lj  marginal percentages of ( )lz x  are 

equivalent to one marginal percentage of ( )jz x , whereby 

all objectives are satisfied on the level of j , 1, ,j k  . 

 wij < 0,  when lj  marginal percentages of ( )lz x  are not 

preferred to one marginal percentage of ( )jz x , whereby 

all criteria are satisfied on the level of j , 1, ,j k  . 

In order to find a set of indifferent nondominated solutions2 
the decision-maker is asked whether lj  percentages of 

objective function ( )lz x  are more, less, or equally preferred to 

one percentage of the objective function ( )jz x . The worth of 

*
lj  is selected so that *( ) 0lj ljw   . 

The interaction with the decision-maker goes on until a 

single solution *z  is found for which all *( )lj ljw   are equal to 

zero. This may not be realised in the first attempt [10]. 
Therefore SWT method is much more complicated 

compared to goal programming method. It requires more 
information from the decision maker. The required 
information can be difficult for the decision maker to answer. 
Sometimes the solution process can last long and be difficult 
for both the decision maker and the analyst. Unlike the SWT 
method, the goal programming method can give the solution 
without any information from the decision maker, and when 
the decision maker can give information on the relative 
importance of objective functions, the obtained solutions 
express the preferences of the decision maker. Because of that 
the proposed goal programming approaches are more 
appropriate compared to the SWT method. 

IV. CONCLUSION 

In this paper five different goal programming approaches 
for solving MOLPP has been presented. The applicability of 
the presented goal programming approaches has been tested 
on the concrete problem of the technological variants and 
production program optimization. The obtained results show 
the high level of applicability of the proposed approaches. The 
min-weighting sum approach is chosen as the best one for 
solving the problem of the technological variants and 
production plan optimization because it is simple for using for 
 

2 Indifferent nondominated solution is the one for which  *( ) 0lj ljw   . 

both the decision maker and the analyst, and the obtained 
results always reflect the preference of the decision maker 
expressed through the weights. 

The goal programming approaches and the obtained results 
are compared with the SWT method that was applied in 
solving the same problem. The goal programming approaches 
have many advantages compared to the SWT method. 

For the next research we propose further investigation of 
applicability the newest MOLP methods as MP method [13]. 
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