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Abstract—Metal thin-walled members have been widely used in 
building industry. Usually they are utilized as purlins, girts or ceiling 
beams. Due to slenderness of thin-walled cross-sections these 
structural members are prone to stability problems (e.g. flexural 
buckling, lateral torsional buckling). If buckling is not 
constructionally prevented their resistance is limited by buckling 
strength. In practice planar members of roof or wall cladding can be 
attached to thin-walled members. These elements reduce 
displacement of thin-walled members and therefore increase their 
buckling strength. If this effect is taken into static assessment more 
economical sections of thin-walled members might be utilized and 
certain savings of material might be achieved. This paper focuses on 
problem of determination of critical load of steel thin-walled beams 
with lateral continuous restraint which is crucial for lateral torsional 
buckling assessment. 
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I. INTRODUCTION 

ESISTANCE of steel thin-walled beams with no lateral 
restraints along the span is usually limited by lateral 

torsional buckling. In case there are planar members of 
cladding attached to beams, the buckling strength is higher 
because those members work as lateral restraint. It completely 
or partially prevents lateral displacement of cross-section of 
the beam. The paper focuses on problem of steel thin-walled 
beams with lateral continuous restraint against lateral torsional 
buckling. Theoretical background beyond lateral torsional 
buckling of an isolated and a laterally restrained beam is 
described and differences between them are highlighted. 
Parametric study of laterally restrained beams with various 
spans and load conditions is performed and results are 
compared with results of analysis of isolated beams (with no 
lateral restraints). An option of determination of critical load 
using numerical algorithms is outlined.  

II. LATERAL TORSIONAL BUCKLING OF AN IDEAL ISOLATED 

BEAM 

The effect of lateral torsional buckling of an ideal beam 
(with no initial imperfection) is characterized by spatial 
displacement of the cross-section perpendicularly to the plane 
of bending and by rotation of the cross-section [1]. It is 
illustrated in Fig. 1 where qz is vertical load, Cg is cross-
section center of gravity, Cs cross-section shear center, az is 
distance of shear center and center of gravity and ez is distance 
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of the point of load application and center of gravity. The 
compressed part of cross-section tends to buckle laterally. The 
resulting deformation consists of two components: lateral 
displacement v and angle of rotation φ. 

 

 

Fig. 1 Lateral torsional buckling of an ideal isolated beam 
 
Lateral torsional buckling of an ideal beam occurs when 

critical load is reached. The problem was dealt with by Vlasov 
in form of differential equations of stability of an arbitrary 
thin-walled member loaded by bending and axial force [2]. 
After modification for a member in bending only the problem 
is defined by two homogenous differential equations of order 
four with appropriate boundary conditions. For a beam simply 
supported in bending as well as in torsion (1)-(4) apply. 
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In these expressions E is Young’s modulus, G shear modulus, 
Iz second moment of area, Iω warping constant, It torsion 
constant, qz vertical load in the XZ plane, My bending moment 
in the same plane, v and φ unknown functions of deformation 
and bz the so called characteristic abscissa. 

Formula for its determination can be found in [1]. In the 
mathematical point of view the critical moment is defined as 
eigenvalue problem of above mentioned differential equations 
and appropriate boundary conditions. In the actual standard for 
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design of steel structures [3] there is a formula for critical 
moment of an isolated beam of at least monosymmetric cross-
section loaded by transverse load that intersects the cross-
section shear center. 

III. LATERAL TORSIONAL BUCKLING OF AN IDEAL BEAM 

WITH LATERAL CONTINUOUS RESTRAINT 

Let us consider that there is a continuous lateral restraint 
along the span of an ideal simply supported beam (perfectly 
straight beam with no initial imperfections). The position of 
lateral restraint is Clat, distance of the restraint to center of 
gravity is cz (Fig. 2). Let us assume that lateral restraint is 
perfectly rigid so that it fully prevents lateral displacement of 
the cross-section. The beam span is L. Since lateral 
displacement is prevented the only function of deformation is 
angle of rotation φ and (4) applies. 

 

 

Fig. 2 Lateral torsional buckling of an ideal beam with lateral 
continuous restraint 

 
Due to zero lateral displacement the fundamental 

differential equations of the problem are modified to (5) [1] 
with one unknown function of deformation φ, 
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where qz is vertical load. Its critical value (magnitude of load 
when lateral torsional buckling of an ideal beam occurs) is 
given as eigenvalue problem of (5). In this case it is the so 
called Sturm-Liouville eigenvalue problem of differential 
equation of fourth order [4]. This complex problem can be 
solved e.g. using selected numerical methods. 

IV. SOLUTION USING FINITE ELEMENT METHOD 

A. Assumptions and Process of the Analysis 

As an example a double symmetric simply supported steel 
beam of thin-walled cross-section according to Fig. 3 is 
considered. There is lateral continuous restraint located 50 mm 
from the center of gravity. A parametric study is performed 
where various spans from L = 3 m up to L = 10 m are 
investigated. Vertical load is applied on the top flange of the 
beam. Three types of loads A, B and C according to Fig. 4 are 
considered – uniformly distributed load qz (A), force F at 
midspan (B) and bending moments at supports (C). 

 

 

Fig. 3 Cross-section of the investigated beam 
 

 

Fig. 4 Load types A, B, C considered for the analysis 
 

This example is solved using the ANSYS 14.0 [5] code 
based on finite element method (FEM). The thickness of each 
part of the section is low in comparison with other dimensions. 
For this case shell elements are suitable. For the analysis the 
SHELL181 finite element is utilized. The finite element size is 
20 mm. Part of the finite element model is in Fig. 5. 

 

 

Fig. 5 Finite element model 
 
The end supports of the beam comply with the so called 

fork support condition which is assumed for lateral torsional 
buckling analysis [6]. It prevents lateral displacement of the 
cross-section at supports and warping of the open thin-walled 
cross-section can develop freely. The analysis performed 
using the ANSYS code consists of linear static analysis (1st 
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order theory) and linear buckling analysis (LBA) that gives 
eigenvalues of the problem. If applied load in the finite 
element model is multiplied by the eigenvalue obtained from 
the LBA analysis, critical load is gained. Critical moment Mcr 

can be then determined. The analysis provides also the 
buckling shapes (eigenmodes). 

For comparison, the same analysis was performed also for 
appropriate isolated beams to quantify the influence of lateral 
restraint. 

B. Results of the Analysis 

Using the numerical analysis performed in the ANSYS code 
the eigenvalues of the problem are obtained. Values of critical 
moment Mcr are determined using static formulae depending 
on type of load, e.g. for case A (uniformly distributed load) (6) 
applies: 

 

2

8

1
LqM crcr =          (6) 

 
where qcr is the critical load. 

Charts present comparison of critical moments Mcr of 
beams with lateral restraint and of appropriate isolated beam: 
Fig. 6 for uniformly distributed load (case A), Fig. 7 for beam 
loaded by a force at midspan (case B) and a beam loaded by 
bending moments at supports (case C). For each case the 
critical moment of an isolated beam was calculated also 
according to the standard [3] (Czech national annex gives 
procedure for calculation of critical moment). The results 
obtained by procedure according to the standard are very close 
to results for isolated beams determined using ANSYS code 
which confirms accuracy of the finite element model. 

 

 

Fig. 6 Comparison of results, case A 
 

In the following figure there is first eigenmode (buckling 
shape related to the lowest eigenvalue) for the load type A. 
First eigenmodes for other types are similar, beam buckles in 
one wave as well. 

 

 

Fig. 7 Comparison of results, case B 
 

 

Fig. 8 Comparison of results, case C 
 

 

Fig. 9 First buckling shape 
 

In Fig. 10 there is cross-section of the buckled beam at 
midspan (result of the numerical finite element method 
eigenvalue analysis using the ANSYS code). The eigenmode 
complies with the theoretically considered buckling shape 
illustrated in Fig. 2 – the cross-section rotates about the 
position of lateral restraint. 
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Fig. 10 Cross-section of the buckled beam 

V.  SOLUTION USING NUMERICAL ALGORITHMS 

The critical load is defined as eigenvalue problem of (5). 
Since eigenvalue solution of this problem in a close form is 
not known, selected methods of numerical mathematics should 
be used. In this paper one of the possible approaches is 
described. It consists of discretization of the beam span L into 
N elements using finite difference method and eigenvalue 
solution. For practical purposes the most important is the 
lowest eigenvalue (the lowest magnitude of load when lateral 
torsional buckling of an ideal beam occurs) [7]. 

A. Discretization of the Problem 

The interval <0; L> (beam span) is divided into N 
subintervals using step of h. There are N – 1 equidistant nodes 
xi in such a way that 0 = x0 < x1 < … < xN – 1 < xN = L, where xi 
= ih and h = 1 / N. This difference scheme is in Fig. 11. For 
each node xi certain value of unknown function φi is assigned. 
It implies from (4) that φ0 = φ(0) = 0 and φN = φ(L) = 0. 

 

 

Fig. 11 Difference scheme 
 
Let us introduce second and fourth central differences to 

approximate second and fourth derivative, where φi is value of 
unknown function φ in i-th node: 
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Since values of this function in nodes x-1 and xN + 1 (outside 

of the interval) are needed, let us establish these fictitious 
nodes x-1 = - h and xN + 1 = L + h. Application of second central 

difference on (4) gives values of function φ in fictitious nodes: 
φ-1 = - φ1 and φN + 1 = - φN – 1. Functional values in nodes x0 and 
xN are equal to zero (it implies from the boundary conditions) 
and functional values in nodes x1 to xN – 1 are to be solved. 

Let us introduce following expressions for further 
calculations: 
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Equation (13) is assembled for each node xi where i = 

1, …, N by putting (7) and (8) into (5). This modification leads 
to a system of N – 1 algebraic equations that can be expressed 
using matrix G and vector φ: 

 

ϕϕ zqG =                                    (13) 

 
where 
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Equation (13) is to be used for the eigenvalue solution. 

Matrix K is defined as: 
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The vector φ is a vector of unknown functional values φi 

assigned to appropriate nodes xi where i = 1, …, N (according 
to the difference scheme). 

The members of the matrix K are expressed by: 
 

AKK iiii == ++ 2,,2
   for i = 1, …, N – 3                 (16) 

 

1,1 4 ++ +−= iii SAK    for i = 1, …, N – 2                 (17) 

 

iii SAK +−=+ 41,
   for i = 1, …, N – 2                   (18) 

 

iii SAK += 6,
   for i = 2, …, N – 2                    (19) 

 
Members K1,1 and KN-1,N-1 are influenced by boundary 

conditions. It results in (20): 
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iii SAK += 5,
   for i ={1; N – 1}                       (20) 

 
The expression Si is given as: 
 

)(2 BMChS yi −′=                                   (21) 

B. Eigenvalue Problem Solution 

There are several methods of numerical mathematics for the 
lowest eigenvalue of a matrix and appropriate eigenvector (in 
the physical point of view it is the buckling shape) solution. In 
this paper the iterative QR-algorithm [8] applied on the matrix 
G is utilized. This algorithm is briefly outlined [8]: 

 

QRGG == 0
                                 (22) 
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where matrices Qk and Rk are products of the QR-
decomposition of the matrix G. The matrix G can be 
decomposed to the matrices Qk and Rk e.g. using Gram-
Schmidt orthonormalisation process [9]. Expression (24) then 
applies: 

 

DGk
k
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where D is a diagonal matrix with eigenvalues on its diagonal 
(other members are zero). The eigenvectors are given as 
columns of a matrix that is product of matrices Qk+1 and Qk 
multiplication in each step of iterative calculation. 

The above described algorithms of the finite difference 
method and the QR-algorithm were applied to a simply 
supported beam of thin-walled cross-section according to Fig. 
3 of a span equal to L = 5 m. The beam span was divided into 
50 elements (step h = 0,10 m). The beam is supposed to be 
loaded by vertical uniformly distributed load of a magnitude 
of 1 kN/m at the top flange (it complies with the load type A). 
Differential equation of the problem was assembled for each 
node of the beam span and resulting system of algebraic 
equations with system matrix K was solved using the QR-
algorithm. The resulting lowest critical load for this case is qcr 
= 142660 N/m. Normalized eigenvectors (buckling shapes) are 
depicted in Fig. 12. For clarity purposes, in Fig. 12 only first 
five buckling shapes are selected and labeled as “EV”. 

C. Comparison with the Finite Element Method 

Results obtained by the QR-algorithm applied to the 
investigated problem are compared with results of the LBA 
analysis performed using the ANSYS code and summarized in 
Table I. The critical moment Mcr was calculated using the 
lowest critical load qcr according to (6). 

 
TABLE I 

COMPARISON OF RESULTS 

Method 
Critical load qcr 

(kN/m) 
Critical moment Mcr 

(kNm) 

Finite element method 146,61 458,2 

Finite difference method 142,66 445,8 

 

Fig. 12 Normalized eigenvectors (buckling shapes) 

VI. SUMMARIZATION OF RESULTS 

It implies from Figs. 6-8 that influence of lateral restraint on 
the critical load is significant. The lateral restraint causes 
increase its value of (on average) about 98 % (case A), 72 % 
(case B) and 211 % (case C). This notable increase of critical 
load results in higher buckling resistance of the laterally 
restrained beam. Taking it into account more economical 
beam cross-sections might be utilized. 

Fig. 13 shows results of a parametric study of various spans 
of laterally restrained beams (cz = 50 mm) solved by finite 
element method (FEM) and finite difference method (FDM). 
For comparison purpose, the results of analyses of identical 
beams with no lateral restraints solved by FEM are showed 
together with results of calculation of critical load of an 
isolated beam according to [3]. 

In Fig. 13 certain differences of results for short spans 
occur. This inaccuracy is given by the finite element method 
solution. The finite element method code takes into account 
also local buckling effects of a short beam with slender walls 
that contribute to reduction of critical load. For larger spans 
the global effect (lateral torsional buckling) completely 
prevails and differences between methods are insignificant. 

The fundamental equation from which the problem matrix 
is derived is actually the equation defining global stability 
problem and local effects are not included. 

VII. CONCLUSION 

The paper deals with lateral torsional buckling of steel thin-
walled beams with lateral continuous restraint. The lateral 
restraint causes increase of buckling resistance of cross-
sections. The paper quantifies this positive influence using 
example of double symmetric thin-walled beam with lateral 
continuous restraint. For solution finite element method and 
selected iterative algorithms of numerical mathematics (finite 
difference method, QR-algorithm) for eigenvalue solution 
were utilized. Results of both approaches are very close. 
Taking higher critical load into calculation of buckling 
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resistance of a beam might lead to more economical cross-
sections ant therefore certain material savings may be 
achieved. 

 

 

Fig. 13 Comparison of results 
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