International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:2, 2015

A System for Analyzing and Eliciting Public
Grievances Using Cache Enabled Big Data

P. Kaladevi, N. Giridharan

Abstract—The system for analyzing and eliciting public
grievances serves its main purpose to receive and process all sorts of
complaints from the public and respond to users. Due to the more
number of complaint data becomes big data which is difficult to store
and process. The proposed system uses HDFS to store the big data
and uses MapReduce to process the big data. The concept of cache
was applied in the system to provide immediate response and timely
action using big data analytics. Cache enabled big data increases the
response time of the system. The unstructured data provided by the
users are efficiently handled through map reduce algorithm. The
processing of complaints takes place in the order of the hierarchy of
the authority. The drawbacks of the traditional database system used
in the existing system are set forth by our system by using Cache
enabled Hadoop Distributed File System. MapReduce framework
codes have the possible to leak the sensitive data through
computation process. We propose a system that add noise to the
output of the reduce phase to avoid signaling the presence of
sensitive data. If the complaints are not processed in the ample time,
then automatically it is forwarded to the higher authority. Hence it
ensures assurance in processing. A copy of the filed complaint is sent
as a digitally signed PDF document to the user mail id which serves
as a proof. The system report serves to be an essential data while
making important decisions based on legislation.

Keywords—Big Data, Hadoop, HDFS, Caching, MapReduce,
web personalization, e-governance.

[. INTRODUCTION

IG data is a popular term used to describe the exponential

growth and availability of data, both structured and
unstructured. Knowing the people better will allow serving
them better. Satisfying the need of the people is the main
motto of this system by analyzing and eliciting public
grievances using cache enabled bid data. In this system more
data leads to difficulty in handling of data and to analyze
them, so the data are handled by HDFS and MapReduce
framework with caching technique [6]. MapReduce provides
simple programming interface and excellent performance.
Application that takes a large amount of data as input are
referred to big data applications.

In MapReduce input data is split into pieces and served to
the workers node in mapping phase [2]. MapReduce system
parses the input splits to each worker. The intermediate results
generated by worker nodes during mapping phase are shuffled
and sorted by MapReduce system are served to workers node
in reducing phase. Final results are generated by reducers.

P. Kaladevi and N. Giridharan are with Department of Computer Science
and Engineering, Assistant Professor, from K.S.Rangasamy College Of
Technology, Tiruchengode — 637215, Namakkal, Tamil Nadu, India (e-mail:
kaladevi@ksrct.ac.in, giri.susee@live.com).

Hadoop is an open-source implementation of Google
MapReduce Programming model. Hadoop Distributed File
System (HDFS) provides distributed file storage and is
optimized for large immutable blobs of data [9]. A simple
Hadoop cluster contains single master and multiple worker
nodes. In this paper we present a cache description scheme
that will improve the response time of system. This scheme
recognizes the source input from which the cache content is
generated and operations are performed on the input. We also
present the additional reducer that will generate the final result
from the cache node and data node. We implement the cache
enable big-data by extending the components of Hadoop
project.

Reduce

Input Output

Reduce

Map3

Fig. 1 Illustration on the MapReduce Programming Model

A demand of discovering knowledge from big data using
statistical analysis and data mining become higher [3].
MapReduce computation comes with many security problems.
Besides communication attacks such as replay, Denial of
Service (DoS), MapReduce also have a privacy issue. A
careless or malicious MapReduce application may expose
sensitive data by writing it into a word readable file or by
providing a specific result that will signal the presence of a
sensitive item in datasets [11].

II. CACHE DESCRIPTION

Cache refers to the immediate data that is used to generate
the partial output before processing the entire dataset. Big data
Cache refers to the data which is most recently used by the
MapReduce task. In this system we refer the recently
submitted complaint files as the cache data. These data are
stored in a Hadoop Distributed File System (HDFS). Cached
data are managed in the clusters which are dedicated to store
the cache data. For example, in the word count application,
each mapper produces a list of {word, count} tuple that
contains the count of each word in the file which are used as

593

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:2, 2015

input to the mapper [8]. Reducer sorts and shuffles those
tuples and generates the final result. We present cache cluster
with two nodes one that stores recently submitted complaint
files and another node that stores recently accessed complaint
files. To avoid duplication the files are moved between the
cache nodes and data nodes.

A. Map Phase Cache Description

In this system two types of map phase are introduced
namely cache map phase and data map phase. Cache map
phase splits the input from cached data to each cache worker
nodes and produces records. Data map phase splits the data
from data node and splits to worker nodes. Each phase
performs the same task but source of the data differs [12].

The exact format of the cache description differs with
respect to the specific semantic context of different
application. This could be designed and implemented by
application developers who are responsible for implementing
MapReduce tasks.

B. Reduce Phase Cache Description

The input for the reduce phase is a list of records from the
map phase. Reduce phase generates the final result by sorting
and shuffling the records from the map phase. We present
three types of reducer phase namely cache reduce phase, data
reduce phase and final reduce phase. Cache reduce phase
performs the sorting and shuffling in the data generated by
cache map phase [7]. Data reduce phase performs the same
operation in the data generated by data map phase. Final
reduce phase produces output by computing the reducing
function over the data generated by the cache reduce phase
and the data reduce phase.

For example, two data files “filel.data” and “file2.data”
from cache map phase are shuffled to produce two input files
“inputl.data” and “input2.data” for cache reducers and two
data files “file3.data” and “file4.data” from data map phase are
shuffled to produce two input files “input3.data” and
“input4.data” for data reducers. Finally cache reducer output
file “outputl.data” and data reducer output file “output2.data”
are shuffled to produce input files “finputl.data” and
“finput2.data” for final reducer.

III. PrROPOSED SYSTEM

A. Complaint Registration

In this paper, we present a system that will allow public
users to register their complaints and to track them using the
web based interface. The complaints are registered through the
Public grievances website. The registered complaints are
stored in a Cache enabled HDFS. Once the complaint is
stored, a unique complaint ID is generated for each complaint
that serves as the primary key for the data stored in Hadoop.
Based on the type of the complaint registered, they are
categorized and processed. With the help of complaint ID, the
status of the complaint can be viewed. If a complaint is not
being updated regularly, it will be automatically forwarded to
the higher authority for timely action and to intimate about the
status of the complaints to the people.

B. Cache Item Submission

The complaints that are received from the users are stored in
the Hadoop Distributed File System (HDFS). These files are
not directly fed into the data node. Initially these files are
stored in the node which is dedicated to store the cache files.
The cache manager records the description and the file name
of the cache item in the DFS. The cache item put on the
different machine which contains its own mapping and
reducing process [4]. Cache master continuously monitors the
MapReduce task when the new files queried from the data
node for the process then cache master moves that file from
the data node to the cache node. Cache master moves the files
instead of copying to avoid the duplication.

Cache system contains two different nodes one that stores
recently submitted complaint files and another node that stores
recently accessed complaint files. Storing of files in their
respective nodes are performed by cache master. When new
file arrives for storing in cache, the origin of the file is
identified by the cache master and fed into the respective
cache nodes. Cache master must aware of the files that are
stored in the cache nodes [10]. It should keep track on files
that are stored and deleted from the cache and maintain index
file.

Cache Clusters

Cache

Red
Master conee

| \

Final
Reducer

Input

Node

Master Reduce

Fig. 2 Illustration on the MapReduce Programming Model with
Cache Cluster

C. Map Cache

There are several problems that are caused during designing
of the Hadoop MapReduce framework. The first is, when
mappers request cache for input? As described cache items are
managed by the cache master, when the complaint file is
requested for processing initially request will be sent to cache
master and data master [1]. The cache master invokes the
cache mapper to split the complaint files from the cache and
fed those records to the worker nodes in the cache clusters.
The cache mapper phase and data mapper phase performs the
same operation on different set of complaints and generates
the different intermediate result.

594

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:2, 2015

D.Reduce Cache

The cache reduce process is more complicated. The first
step is to sort and shuffle the intermediate result generated by
the map phase and fed into the workers in the reduce phase.
Intermediate result from cache map phase and the data map
phase are reduced separately. The results from both reducers
can be used immediately for processing [5]. Cache map
reducers generate the result earlier than data reducers. The
cache results are immediately available to the user for
processing the complaints. But the cache result is generated
only by processing the recently filed complaints and recently
accessed complaints. So, cache result provides only partial
output. The final result is obtained by re-reducing the result
from the cache reduce phase and the data reduce phase. We
present an additional reducer that will generate the final output
by sorting and shuffling the intermediate result from both
reducers.

E. Noise Addition for Security

After the complaints are submitted cache master adds noise
value to the actual input file and store it in the Hadoop
Distributed File System (HDFS). Therefore, malicious user
that aim to leak the information about an individual input or
signal its presence in the input dataset will get the strange
value. The authorized MapReduce code can able to remove
the noise from the input files and process them to generate the
actual output [11].

F. Processing Complaints

In the processing of complaints, the system provides
complaint automation system. It has three steps namely,
* Internal review
* Actual processing
» External review.

Internal review involves analyzing the complaint and
forwarding to the concerned authority. Actual processing
refers to the processing and verifying the complaint received.
External review involves implementation of the complaint
statement and rectifying it.

IV. PERFORMANCE EVALUATION

A. Implementation

We extend Hadoop to implement Cache. Hadoop contains a
collection of libraries and tool for Distributed File System
(DFS) and MapReduce computation. The complexity of entire
package is beyond our control, so we implement the cache
technique for Hadoop in a non-intrusive approach and by
changing the components that are open to application
developers. Basically, the cache manager is implemented as
separate server. The cache manager uses HDFS and DFS
component of Hadoop to manage storage of cache items.

In order to access cache items, the mapper and reducer first
request the cache manager. However this cannot be
implemented in Mapper and Reducer classes. Hadoop mapper
and reducer classes cannot identify the file split they are
working on. Therefore, cache requests cannot be sent from
mapper or reducers. We alter InputFormat class which is
responsible for splitting the input files to request the cache
files. We also alter the TastTracker, which is responsible for

managing jobs. TaskTracker is able to understand file split and
bypass the execution on mapper classes.

B. Results

Fig. 3 presents the speedup and completion time of the
processing. The size of the input data increases and is
represented as a percentage number. This complaint
processing system is more CPU bound compared to other
applications, as a result Cache enabled Hadoop can bypass
computation tasks that take more time, which achieves larger
speedups. The speedup decreases due to the increasing size of
input files, but cache enabled Hadoop can able to complete the
job faster than Hadoop in every situation.

The increased number of mapper and reducer improve the
processing speed. The cached complaint files and general
complaint files are fed into separate MapReduce phase for
processing, therefore the result generated faster than the
Hadoop. The result from the cache reducers is available
immediately before the data reducers completes its
computation.

4000

—@— Hadoop completion time
3500

—l— Dache completion time

3000

2500

2000

1500

Completion time (s)

1000

500

0
0 50 100 150

Incremental size (%)

Fig. 3 The speed of Cache over Hadoop and their completion time

V.CONCLUSION

We present the system includes storing of data in Hadoop
platform. Unlike the existing system, the system uses caching
technique to provide the efficient handing of complaints. The
caching system for big data can bypass computation tasks that
take more time, which achieves larger speedups. The system
with caching technology generates the reports faster than
traditional database systems. It allows accessing the recently
filed complaints more quickly than older complaints.

REFERENCES

[1] Arthur G. Erdman, Daniel F. Keefe, Senior Member, IEEE, and Randall
Schiestl, “Grand Challenge Applying Regulatory Science and Big Data
to Improve Medical Device Innovation,” IEEE Transaction on
Biomedical Engineering, vol. 60(3), pp. 700-706, March 2013.

[2] Benedikt Elser and Alberto Montresor, “An Evaluation Study of
BigData Frameworks for Graph Processing,” IEEE International
Conference on Big Data, pp.60-67, 2013.

595

[4]

(3]

(8]

(9]
[10]

(1]

[12]

International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:2, 2015

C.Dobre, F.Xhafa, “Intelligent services for Big Data science,” Future
Generation Computer Systems, pp. 1-15, July 2013.

C.L. Philip Chen and Chun-Yang Zhang, “Data-intensive applications,
challenges, techniques and technologies A survey on Big Data,”
Information Sciences, pp. 1-34, January 2014.

Chad A. Steed, Danial M. Ricciuto, and Galen Shipman, “Big data
visual analytics for exploratory earth system simulation analysis,”
Computers & Geosciences, pp. 71-82, August 2013.

Chia-Wei Lee, kuang-Yu Hsieh, Sun-Yuan Hsieh, and Hung-Chang
Hsiao, “A Dynamic Data Placement Strategy for Hadoop in
Heterogeneous Environments,” Big Data Research, pp. 14-22, July
2014.

Daniel E. O’Leary, “Artificial Intelligence and Big Data,” IEEE
Intelligent Systems, pp. 96-99, March/April 2013.

Foto N. Afrati and Jeffrey D. Ullman, “Optimizing Multiway joins in
Map reduce Environment,” IEEE Transaction on Knowledge and Data
Engineering, vol. 23(9), pp. 1282-1298, September 2011.

Hadoop, http://hadoop.apache.org/, 2014.

Juwei Shi, Wei Xue, Wenjie Wang, and yuzhou Zhang, “Scalable
community detection in massive social networks using MapReduce,”
IBM Research and Development, vol. 57(3/4), pp. 1-14, May/July 2013.
Quang Tran and Hiroyuki Sato, “A Solution for Privacy Protection In
MapReduce,” IEEE 36™ International Conference on Computer Software
and Applications, pp. 515-520, 2012.

Yaxiong Zhao, Jie Wu, and Cong Liu, “Dache: A Data Aware Caching
for Big-Data Applications Using the MapReduce Framework,”
Tsinghuascience and technology, vol. 19(1), pp. 39-50, February 2014.

596

