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Abstract—This work is the first dowel in a rather wide research
activity in collaboration with Euro Mediterranean Center for Climate
Changes, aimed at introducing scalable approaches in Ocean
Circulation Models. We discuss designing and implementation of
a parallel algorithm for solving the Variational Data Assimilation
(DA) problem on Graphics Processing Units (GPUs). The algorithm
is based on the fully scalable 3DVar DA model, previously proposed
by the authors, which uses a Domain Decomposition approach
(we refer to this model as the DD-DA model). We proceed with
an incremental porting process consisting of 3 distinct stages:
requirements and source code analysis, incremental development of
CUDA kernels, testing and optimization. Experiments confirm the
theoretic performance analysis based on the so-called scale up factor
demonstrating that the DD-DA model can be suitably mapped on
GPU architectures.
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I. INTRODUCTION

ATA Assimilation (DA) is an Uncertainty Quantification

technique widely used in simulation science to
incorporate observational data into a prediction model [15].
Due to the scale of the forecasting area and the number
of state variables used to describe ocean or atmosphere for
climate or weather predictions, DA are large scale problems
that should be solved in near real-time. During the last
20 years, parallel algorithms for data assimilations reached
a widespread interests at many federal research institutes
as well as at many universities [NCAR (National Center
for Atmospheric Research), NCEP (National Centers for
Environmental Prediction), DWD (Deutscher Wetterdienst),
UK Met Office, JIMA (Japan Meteorological Agency), CMC
(Canadian Association of Management Consultants) and the
CMCC (Euro- Mediterranean Center for Climate Changes)].
The CMCC makes use of a 3D Variational (3DVar)
DA software, called OceanVar, for assimilating data in
Mediterranean Forecasting System (MFES) context [10], [3].
MES is a daily 10-day forecast system in operational use
since 1998, and its ocean general circulation model (OGCM)
is based on the Ocean Parallelise (OPA) code, which has
subsequently been set up for the Mediterranean Sea (NEMO
framework) [17].
Together with University of Naples Federico II, CMCC has

R.Arcucci is with the Imperial College London, London (UK) e-mail:
r.arcucci @imperial.ac.uk

S.Celestino, G.Scotti, L.D’ Amore, G.Laccetti are with University of Naples
Federico II, Naples (IT), e-mail:

(simone.celestino,giuseppe.scotti,luisa.damore,giuliano.laccetti) @unina.it

L.D’ Amore is with Euro Mediterranean Center for Climate Changes, Lecce
aT)

developed a fully scalable 3DVar DA model which is based
on a Domain Decomposition approach (called DD-DA model)
[5], [4]. The resulted parallel algorithm consists of several
copies of a slightly modified 3D-Var algorithm, each one
requiring approximately the same amount of computations
on each sub domain and an exchange of boundary conditions
between adjacent sub domains. Data flow across the surfaces
and a so-called surface-to-volume effect is produced [1].
Over the last few years, the rapid evolution of Graphics
Processing Units (GPUs) into powerful, cost-effcient,
programmable computing architectures for general purpose
computations has provided application potential beyond the
primary purpose of graphics processing. As the number of
supercomputers equip GPUs is massively increasing [19],
large scale problems are embracing GPUs for massive thread
level parallelism. GPUs have enjoyed rapid adoption within
the high-performance computing (HPC) community because
GPUs enable high levels of fine-grain data parallelism.
The latest GPU programming interfaces such as NVIDIAs
Compute Unified Device Architecture (CUDA) [14], and more
recently Open Computing Language (OpenCL) [16] provide
the programmer a flexible model while exposing enough
of the hardware for optimization. GPU clusters, where fast
network connected compute-nodes are augmented with latest
GPUs, [18] are now being used to solve challenging problems
from various domains. These new systems are designed for
high performance as well as high power efficiency, which is
a crucial factor in future exascale computing.

However, GPU architecture is unlike that of any other, and
designing algorithms to fully harness the capabilities of
a GPU is not a straightforward task, especially when one
considers the advantages and disadvantages of the various
resources that a GPU has available to it. To best utilize the
computing capabilities provided by the graphic processors,
it is highly desired to study how to map algorithms and
programs on them. Briefly, the goal is to reduce the total
data transfer time as much as possible, meaning reducing the
amount of data that is transferred back and forth between
host (the CPU) and device (the GPU).

In this article we describe how DD-DA model is well-suited
for efficiently using GPU architecture. The paper is organized
as follows. In Section II our parallel approach is presented.
The mathematical model we implement is reviewed in
Section II-A. In Section II-B a brief overview of the GPU
architecture and some programming basics required to
understand our methods are provided. Section II-C shows
the implementative strategy we used for efficiently using
architecture of GPU to develope DD-DA model. In Section III
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we present selected numerical results to demonstrate the
effectiveness of the GPU-based parallel DD-DA algorithm.
Section IV concludes the paper and outlines possible future
work.

1I. DOMAIN DECOMPOSITION DA MODEL FOR GPUS

The DD-DA model is based on a Domain Decomposition
approach for solving Variational Data Assimilation problem
[5]. The model uses a partition of the global domain into
sub domains. On these sub domains we define local 3D-Var
functionals and we prove that the minimum of the global
3D-Var functional can be obtained by collecting the minimum
of each local functional. The (global) problem is decomposed
into (local) sub problems in such a way. The resulted algorithm
consists of several copies of a slightly modified 3D-Var
algorithm, each one requiring approximately the same amount
of computations on each sub domain and an exchange of
boundary conditions between adjacent sub domains.

Fig. 1 shows a simple example of how the DD-DA model
works on a decomposition of the global domain in six
subdomains. Red points represent the observed data which are
distributed geographically as the physical subdomains. Green
lines represent the overlapping regions between different
physical subdomains. With this decomposition, local DA
problem are solved concurrently, each subdomain is processed
on a processor node of the supercomputer, which make
this method fully scalable and highly parallel. It makes DA
applications feasible for big forecasted data and observations.
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Fig. 1: Example of how the DD-DA method works on a
decomposition of the domain in six subdomains processed by six
Hardware Components (HC). The red points represent the observed
data. The green lines represent the overlapping regions between
different physical subdomains.

A. DD-DA computational model

Let tx, £ = 0,1,...,n be a sequence of observation
times and, for each k, let zp, = wp(tx) € RN be the
vector denoting the state of the Mediterranean sea system at
time ¢, as defined in (1) where 1" is the three-dimensional
temperature field, S the three-dimensional salinity field, 7 the
two-dimensional free surface elevation, and u,v are the total
horizontal velocity components and where with x we denote
the vector transposed.

Ty, = [T7 S,7],U7U}* (1)

At each time step ¢, let y; be the observations vector as
defined in (2) where Hj, : RY — R? is a non-linear operator
collecting the observations at time % [3].

yr = Hi(xy) 2)

Let (3) be an overlapping decomposition of the physical
domain 2 such that ; N Q; = Q;; # 0 if ; and €Q; are
adjacent and €2;; is called overlapping region.

Nsup
o= J o (3)

i=1
According to this decomposition the DD-DA computational
model is a system of Ng,; non-linear least square problems
[10], [5] described in (4)-(6) where .J; in (6) is a cost-function.

Nsub
epalts) = Y Epa,(te) “4)
i=1
_ | argming, Ji(xy) on
Tpa; = { 0 on 90—, O

Ji(zk) = [[Hi (Xk,) = Y 1R + %6, — %0, I, +
i, /g — %k, /s, (6)

rpa in (4) is the analysis (i.e. the estimation of the
vector xy, at time t;). The variables xng;, and yg, in (6)
are the same vectors xpg;, and yj in (1) and (2) defined on
the subdomain €2;, R; and Bj; are the covariance matrices
defined in (7) and (8), whose elements provide the estimate
of the errors on yi, and on xy, , respectively. Also the
variables x;/€Y;;, x;/€;;, Bjj are the restriction on €;; of
these quantities.

R; = o1, (7
where o2 is the observational error variance.

where

2 Ag? .
cij = pli=il, p:exp<ﬁ>7 li —jl < N/2

N is the size of domain, C denotes the Gaussian correlation
structure of the background errors while o7 is the background
error variance. As a consequence:

w(B) = u(C)
where y(-) denote the condition number.

The ill conditioning of the DA inverse problem [11] (i.e. the
sensitivity of the analysis to small perturbations in the data),

1221



International Journal of Information, Control and Computer Sciences
ISSN: 2517-9942
Vol:9, No:5, 2015

Fig. 2: Model variables on overlapping regions.

depends on the conditioning of the Hessian of each .J; in (6).
Small errors in the Hessian lead to large errors in its inverse,
so the computed solution to the DA problem may be very
inaccurate. In designing of the DA schemes, it is important
to ensure that the conditioning of the Hessian is as small as
possible, or it is essential to use preconditioning techniques to
improve the conditioning.

In our model, matrix B; is decomposed as in (9) to have a
preconditioner.

1 1 1 NI

B, = UDUF =UD} D}UT = (0D} ) (UiD}) ©
1

The matrix V; = U;D;? such that (10) is a preconditioner.

B; = ViV (10)

Let d = [yx — H(xy)] be the misfit, by using the following
linearization of H:

H(z) = H(x + 0x) + H éz

where H is the matrix obtained by the first order
approximation of the Jacobian of H and, by setting v; =
ViTchi, the preconditioned (see [2]) cost function is:

1 1 _
Ji(vi) = 5”?%‘ + 5(Hﬂ/§vz‘ —d)) " RN (H Vv — dy)+

1
5 Vigo! = Viger )T (Vi = Viger) an

where v;" and v are shown in Fig. 2.

On each subdomain of €2, the function J; (Vi =1,..., Ngup),
is minimized using the L-BFGS method [20], [8].

B. GPU architecture

This section is a short overview of the basic key properties
of a GPU device architecture and CUDA API necessary to
comprehend our implementation of the DD-DA algorithm
for GPU which is discussed on the next section. In this
section we just summarize some key properties, in [13] can
be found more detailed descriptions of the architecture and
the programming model. Fig. 3 shows graphically the layout
of a GPU. A GPU can be viewed as a set of independent
streaming multiprocessors. One such multiprocessor contains,
amid other components, several scalar processors which can
execute floating-point arithmetic (ALU). The Global Memory
can be accessed by all processors while the Shared Memory
can be accessed by all scalar processors of a multiprocessor.

| CPU (Host)

Global Memory
I ALU
Core: Cores ore ore:
Registers | Regisiers | Registers | see Regisiers
Shared Memory Shared Memory Shared Memory Shared Memory
Multiprocessor 0 Multiprocessor 1 Multiprocessor 2 Multiprocessor N
GPU Device

Fig. 3: GPU device architecture

Before describing the algorithm, it is worth noting that
the GPU architecture is much more optimized for performing
calculations than for memory accesses. Therefore, considering
the multiple types of memory that the GPU architecture
typically includes, it is important to keep this in mind when
accessing these types of memory, particularly the slower,
off-chip ones such as the GPUs global and the hosts main
memory. The most costly memory access is by far the
host-to-device (CPU to GPU) data transfer, and reducing
that transfer can have a tremendous impact on the overall
performance of any algorithm that is implemented in part or
fully on a GPU.

C. Mapping of DD-DA model on GPU architecture

Let ny, X ny X n, be the size of a computational grid which
discretize €2 and let Ny, = p X ¢ be the number of sub
domains partition of ). We group gridpoints into blocks, we
partition the computational grid into p X ¢ three-dimensional
(3-D) blocks of size ng, . X ny,, . xn., each of which can be
viewed as consisting of q two-dimensional (2-D) blocks (see
Fig. 4) with ng,, and n,, _ defined in (12). These dimensions
include overlapping (20, X 20).

n. n.
Nappe = ;’” + 20z, Ny, = ;y + 20, (12)

In Fig. 4, orange points represent overlapping regions. From
the viewpoint of the blocks, the overlapping region are not
completely part of blocks, but come from adjacent blocks: the
North, South, East, West overlapping are from neighboring
blocks in those respectively directions.

Let us now describe the mapping of the DD-DA model on
the GPU architecture. In any GPU implementation, the CPU
(the host) runs the program and unloads some kernel functions
(generally the more computationally demanding code parts) to
the GPU (the device). In our algorithm, the CPU acquires the
input data (data from forecasting model and observations) of
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Fig. 4: Application of our partitioning approach on an example
computational grid of size n, X ny X n, = 12 x 10 x 3, with
Nzloc = 6 and ny1oc = 5. In this example, the computational domain
is partitioned into 3-D blocks of size nzioc X Nyloc X Nz = 6 X 5 X 3.

the geographical region which is been assigned to it. It also
computes N, covariances matrices and the misfits.

In any GPU implementation when a C program, using CUDA
extensions and running on the CPU, invokes a kernel, many
copies of this kernel (which are referred to as threads) are
distributed to the available multiprocessors, where they are
executed. Threads are grouped into thread-blocks, which are
in turn arranged on a grid. Threads in a thread-block are
executed by processors within a single multiprocessor. All
threads in a thread-block can read from and write on any
shared memory location assigned to that thread-block. Threads
within the same thread-block are able to communicate with
each other very efficiently via the shared memory and are able
to synchronize their executions. Thread-blocks can execute
in any order relative to each other, which allows transparent
scalability in the parallelism of CUDA kernels.

In our algorithm, we decided to assign each 3-D block of
physical grid-points to a thread-block which carries out all
the computations/work associated with all grid-points. Hence,
thread-blocks are been solved on the GPU concurrently. Each
one computes the minimum of the function J; defined in
(11) on its part of the computational grid, by using a CUDA
version of the L-BFGS routine [8]. The boundary conditions
between adjacent subdomains are efficiently communicated
via the shared memory by introducing a synchronization of
thread-blocks, as described in Algorithm 1. The global solution
rpa defined in (4) is computed on the host finally.

III. NUMERICAL RESULTS

In this section, we present selected numerical results
to demonstrate the effectiveness of the GPU-based parallel
DD-DA algorithm. We used the CUDA 3.2 driver and toolkit,
and all the experiments with the GPU code were conducted
on a NVIDIA Tesla K20, which allows double-precision
computations, and is connected to a quad-core Intel i7 CPU
running at 3.07GHz, 12 GB of RAM. Out test case is based
on shallow water equations which are a a simplified version of
NEMO forecasting model. Occording with NEMO, we have a
variable time ¢, and space coordinates (x and y) as independent

Algorithm 1: GPU implementation of DD-DA scheme
CPU

1: Acquire the observations y, and the model vector Xy,
2:fori=1to Ny, {

3: Define the operators H,

A: Compute di & vy, - H, X,

5: Estimate the operators Ry, and By,

6: Compute the matrix v, from 8, }

GPU
7: Define the initial value of x™,,
8: Compute v, & V', X%
\_____-‘) o repeat
10: Synchronize (until boundary conditions from the
adjacent domains are available)
11: Compute £y, < J vy}
< N Compute gradiy, < Vivg)
13: Compute new values for vy, by the L-BFGS steps
from J, and gradiy,
14: until (Convergence on the vy, values are obtained)

U 15: Compute X0 & X, + Vv,

16: Compute x™, & sum k™%,

variables. The dependent variables are the fluid height or depth
h and the two-dimensional fluid velocity field u and v. The
state variable is given in (13).

Tar, = [hyu,v]”. (13)

We assume n, = n, = n and n, = 3 which implies
a problem size N = n? x 3. The time step used for the
temporal discretization of model is d; = 0.01.

For executing Algorithm 1 on shallow water test case,
we need to acquire xjs, in (13) by running shallow water
forecasting code. Observations vector y, is obtained by
randomly choosing and randomly perturbing values of xjy,
[5]. We assume Hj, in (2) is a piecewise linear interpolation
function and operators By, and Ry, defined in (14) and (15).

By, =0;C, o0} =05 L=1 (14)

Ry, = 02I, o2 =05. (15)

For fixed values of Ny, the size of each subdomain used
is ﬁ as explained in Section II-C.

In [5] the authors provided a formal mathematical proof of
the reliability of DD-DA model and accuracy of its solution.
Also, our implementation on GPU does not affect accuracy
of numerical results as the arithmetic system we are using is
double precision.

Let TNsw(N) be the execution time of Algorithm 1
for a problem size N defined in (16) where Tj " (N)
is the execution time of algorithm running on the CPU,

g;r’;é’HHD)(N) is the communication time between host

and device and with T.5***(N) execution time of algorithm
running on the GPU. Then

TNsub(N) — TI]'IV'““)(N)—"_TCJ(\J];;‘E)HHD)

def

(N) + T (N)

(16)
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TABLE I: Values of Execution Time of Algorithm Running on GPU for
N=128 which Give a Problem Size O(107).

N p Nsub Tgs“b (N)
o107y 1 2 0.144

2 4 0.044

4 8 0.025

8 16 0.024

As explained at the end of Section II-C, in Algorithm 1,
the host acquires input data, it computes operators Hy,,
dy,;, R, and Vj, and sends all these data to device which
solves concurrently Ny, thread-blocks for computing the
minimum of function J in (11). In practice, the host computes
operators which are input for computations on device and the
device solves the DD-DA model (4)-(6). Hence, TI]{VS“Z’(N )
is execution time that CPU needs for building data. These
data are transferred just once as well as output data mDA
so we have that TN*“E’HHm(N) is reduced to the time of
I/O transfer. For this reasons we evaluate the performance
of DD-DA implementation on GPU by analysing Tg sub (V).
Table I shows execution time of algorithm running on GPU
for N=128 which give a problem size O(107).

Execution time Tg‘*""”(N ) is given by summing time for
computing and time for global and local memories transfers
(see for instance [6]):

Nou Nsu Nsu
TD b(N)valopl()D)( ) + TmevrlL)(D) (N)7 (a7

def
where ngm(D)
transfers into the device. T;\l’ *;bD)(N ) is the computing time
required for execution of floating point operations.

(N) is the time for global and local memories

TTJ,\I’;;‘;(D)(N) can be estimates as in (18) by using size of

processed data D which is the problem size espressed in GB
and bandwidth value By, (see [12]) which is the rate of data
transfer espressed in GB/seconds.

D
~ ﬁ secs . (18)

Nsw
Tmeni(D) ( )

Theoretical bandwidth By, can be calculated using
hardware specifications available in the product literature as
in (19) where Mcp is the memory clock rate and Mgy is
the wide memory interface. In (19) we convert the memory
clock rate to Hz, multiply it by the interface width (divided
by 8, to convert bits to bytes) and multiply by 2 due to the
double data rate. Finally, we divide by 10° to convert the result
to GB/secs.

6 Msw

8 109

In our case, the NVIDIA Tesla K20 GPU uses DDR (double

data rate) RAM with a memory clock rate of 2,6 MHz and

a 320-bit wide memory interface. Using these data items, the

peak theoretical memory bandwidth of the NVIDIA Tesla K20
is 208 GB/secs, as computed in the following

Bw = M¢cg - 10

GB/secs. (19)

TABLE II: Values of TYsub

Flop(D) and Measured Scale-Up Factor Compared
with Theoretical One.

N p T;\l];;(bD)( ) Measured S£)D -ba SZDPD —-ba
O(107) 1 0.127 - -
2 0.027 4.7 4
4 0.008 15.9 8
8 0.007 18.1 16
320 2

By = 2600 - 10° - ‘160 GB/s =208 GB/secs.

8

For a domain of dimension O(107) we have Dy = 3.7 GB
which gives T,op(py = 3.7/208 secs = 0.017 secs.

The Scale-Up factor (see [5]) of algorithm running on the
GPU is function of TD=** (N as given in (20)

flop(D)
Ny
DD—-DA __ TflopED)(N) (20)
Nsub \/ N T N :
def *Vsub fzop<D>( sfb)

We implement on GPU a decomposition into
subdomains/thread-blocks as a multiple of 2, that is
Ngup = 2p where p is called “decomposition step”. For
example, for p = 1 the global domain is divided into
Ngup = 2 subdomains, for p = 2 it is divided into Ny, = 4
subdomains, etc. Also we assume (21) be an eximation
for T2 “”()D)(N ) in terms of time complexity, where T'(N)
denotes the time complexity of Algorithm and ty;,, is the
time required for one floating point operation.

Twa

flop(D)(N) =T(N) X tsiop- 2n

With this assumption, the scale-up factor of algorithm is
given in (22) as we have in our case T(N) = O(N?).

T(N) N? _
W—O —— | =0 (2p).

2 (#5) .

Table 2 shows values of T' S”’(’D) and values of measured
Scale-up factor compared Wlth theoretical once. Finally, we
observe that measured values of Scale-up factor are defined
as in (23) with @ < 1 and apn,,, < 1 as the parallel
implementation we have by using CUDA.

SDD DA

sub
measured SDD ba — Tflop(D)(N) “

(23)

Noub su N ’
27 Now Trisntoy (25) @
since —%— = 3 > 1, we have
XNgyup
DD—-DA _, fli;(bD)( )
measured Sy . ~ ~ B
Newn T fzop(D> (Nm)
Nsu
Thiopioy (V)

_ gbD-DA
Noup N sub
Nsub Tfy5p(m) (Nsub)
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IV. CONCLUSIONS AND FUTURE WORK

Moving forward to exascale will put heavier demands on
algorithms in at least two areas: the need for increasing
amounts of data locality in order to perform computations
efficiently, and the need to obtain much higher factors
of fine-grained parallelism as high-end systems support
increasing numbers of compute threads. As a consequence,
parallel algorithms must adapt to this environment, and new
algorithms and implementations must be developed to extract
the computational capabilities of the new hardware.

We presented a parallel algorithm on GPU which is based
on a domain decomposition approach. The standard approach
for reducing the execution time of an algorithm on GPU
is to place concurrency inside the most time-consuming
computational kernels, i.e. to introduce a parallelism at the
level of fine-grained computations. Furthermore, in order to
reduce the data movement between host and device, thus
increasing the computation/communication ratio, the parallel
algorithm relies on a domain decomposition approach that
introduces a coarse-grained data decomposition which have
more favorable performance characteristics. Finally, coarse
and fine grained computations are suitably mapped on the
processing elements of our target architecture, that is the
multiprocessors and the ALUs respectively [9].

We are currently working on the deployment of this algorithm
in a concrete scenario. Mainly, we are working on the
variational DA systems used with the NEMO ocean model,
on emerging exascale computing architectures [7].
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