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Motion Planning of SCARA Robots
for Trajectory Tracking

Giovanni Incerti

Abstract—The paper presents a method for a simple and
immediate motion planning of a SCARA robot, whose end-effector
has to move along a given trajectory; the calculation procedure
requires the user to define in analytical form or by points the
trajectory to be followed and to assign the curvilinear abscissa as
function of the time. On the basis of the geometrical characteristics
of the robot, a specifically developed program determines the motion
laws of the actuators that enable the robot to generate the required
movement; this software can be used in all industrial applications for
which a SCARA robot has to be frequently reprogrammed, in order
to generate various types of trajectories with different motion times.

Keywords—Motion planning, SCARA robot, trajectory tracking.

I. INTRODUCTION

T
only a simple transfer of the end-effector between two points
of the workspace. Sometimes, however, they are also used
to carry out operations of cutting, welding. gluing, etc., for
which an accurate trajectory tracking is necessary; in these
cases an efficient motion planning is essential to enable the
robot to move correctly along the trajectory. In recent years
the research activities in this area have focused mainly on
the development of mathematical methods for calculation and
optimization of the actuators motion commands, in order to
obtain the correct execution of complex motion tasks. In this
paper a method is described for an efficient motion planning
of SCARA robots, in order to obtain the tracking of user
defined trajectories; the methodology here presented has been
implemented into a general purpose calculation software, that
can be employed in all industrial applications that require a
frequent re-programming of the robot, to allow movements
on different trajectories. The developed software has been
structured according to the following points:

• definition of the robot link lengths and assignment of their
rotation limits;

• computation and graphical representation of the robot
workspace on the computer screen;

• mathematical definition of the end-effector trajectory;
• graphical visualization of the trajectory, in order to allow

the user to verify if the curve is entirely contained in the
workspace;

• definition of the function s = s(t) that assigns the
curvilinear abscissa of the end-effector along the
trajectory as function of the time;

• computation of the end-effector motion (Cartesian
components of the position, velocity and acceleration
vectors);

G. Incerti is with the Department of Mechanical and Industrial Engineering,
University of Brescia, 25123 Brescia, Italy, e-mail: giovanni.incerti@unibs.it.

• computation of the motion commands for the robot
rotary axes;

• graphical visualization of the results, to allow a simple
and rapid verification of the maximum values of velocity
and acceleration.

The following sections describe in detail the calculation
procedure here summarized; the matter was divided into

four basic parts, consisting of sections from II to V and
their respective subsections. In particular, section II briefly
summarizes the SCARA robot kinematics and the procedure
for the calculation of the robot workspace; section III describes
the methods to calculate the actuator motion commands
when the end-effector trajectory and the function s = s(t)
are known; the fourth section gives some details about the
mathematical definition of the end-effector motion law; finally,
section V illustrates the results of some simulations obtained
by means of a computer program, purposely developed inside
this research activity.

II. THE SCARA ROBOT

The schematic structure of a SCARA robot is represented
in Fig. 1. The system has two degrees of freedom and moves
in an horizontal plane. The joint coordinates used for the
kinematic analysis of the system are the angles ϑ1 and ϑ2,
which represent respectively the absolute rotation of the first
link and the relative rotation of the second link referred to
the first one. Using the sign conventions in Fig. 1 the direct
kinematics problem on the position variables is defined by the
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Fig. 1. Schematic structure of a SCARA robot.

HE SCARA type robots are widely used in industrial
operations for “pick and place” operations, which require
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Fig. 2. Workspace of a SCARA robot, calculated with the following data:
l1 = 300mm, l2 = 150mm, Δϑ1 = ±120◦, Δϑ2 = ±150◦.

following relationships1:{
xP = f1(ϑ1, ϑ2) = l1C1 + l2C12

yP = f2(ϑ1, ϑ2) = l1S1 + l2S12
(1)

where xP and yP indicate the end-effector coordinates (point
P in Fig. 1). The robot workspace depends on the length of the
links and by their rotation limits; it can be determined through
the relations (1) by varying the angles ϑ1 and ϑ2 within the
allowable ranges and mapping the coordinates of the point P
in the xy plane. As an example, Fig. 2 shows the workspace
of a SCARA robot, whose links can perform rotations within
assigned intervals Δϑ1 and Δϑ2.

The velocity of point P along the x and y directions can be
calculated by differentiation of (1) with respect to time; thus
we have: ⎧⎪⎪⎨

⎪⎪⎩
ẋP =

∂f1
∂ϑ1

ϑ̇1 +
∂f1
∂ϑ2

ϑ̇2

ẏP =
∂f2
∂ϑ1

ϑ̇1 +
∂f2
∂ϑ2

ϑ̇2

(2)

Using the matrix notation we obtain:

ṗ = Jq̇ (3)

where
p = [xP yP ]

T q = [ϑ1 ϑ2]
T (4)

are the vectors containing the Cartesian coordinates of the
end-effector and the rotations of the links respectively, while

J =

⎡
⎢⎢⎣

∂f1
∂ϑ1

∂f1
∂ϑ2

∂f2
∂ϑ1

∂f2
∂ϑ2

⎤
⎥⎥⎦ (5)

indicates the jacobian matrix of the robot [1].

1For simplicity, we have adopted the following abbreviations:

Si = sinϑi Ci = cosϑi i = 1, 2
S12 = sin (ϑ1 + ϑ2) C12 = cos (ϑ1 + ϑ2)

The acceleration of point P along the x and y directions is
obtained by time differentiation of (3):

p̈ = Jq̈+ J̇q̇ (6)

The solution of the inverse kinematic problem on the
position variables is not particularly difficult; indeed, from
simple geometrical considerations and from the application of
Carnot’s theorem to the triangle OPA (Fig. 3) we have:

⎧⎨
⎩

ϑ2 = ± arccos

(
x2
P + y2P − l21 − l22

2l1l2

)

ϑ1 = atan2(yP , xP )− atan2(l2S2, l1 + l2C2)
(7)

As regards the computation of the joints velocities and
accelerations, we make explicit (3) and (6) with respect to
the joint variables q̇ and q̈:

q̇ = J−1ṗ (8)

q̈ = J−1(p̈− J̇q̇) (9)

The complete expressions of the Jacobian matrix J, its time
derivative J̇ and its inverse J−1 are given in Appendix A.

III. MOTION ON A PREDEFINED TRAJECTORY

This section describes in detail the procedure to calculate
the actuators motion commands of a robot when the trajectory
in the xy plane is assigned and the curvilinear abscissa
of the end-effector is known as function of the time. The
mathematical treatment here presented is independent from the
kinematic architecture of the manipulator under consideration
and therefore it is valid also for not SCARA type robots.

Depending on the mode used for the trajectory definition,
the calculation procedure presents some variants: the cases that
may occur are described in the following subsections.
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Fig. 3. Kinematic scheme of a SCARA robot.
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A. Trajectory Defined in Cartesian Form

Let us suppose that the trajectory is assigned in the xy plane
by means of the function y = f(x); the end-effector initial
position Pi(xi, yi) on the trajectory and the final position
Pf (xf , yf ) are also known (Fig. 4). We denote with the
symbol s the curvilinear abscissa of the end-effector and
suppose that its time dependence is given through the function
s = s(t); finally we suppose that the total motion time T is
assigned. Then we can write:

s(0) = 0 s(T ) = L (10)

where L indicates the length of the trajectory; recalling that
ds =

√
1 + f ′(x)2dx, the trajectory length can be calculated

as:

L =

∫ L

0

ds =

∫ xf

xi

√
1 + f ′(x)2dx (11)

The velocity v of the end-effector along the trajectory is the
time derivative of the curvilinear abscissa:

v =
ds

dt
=

ds

dx

dx

dt
= λ(x)ẋ (12)

where λ(x) =
√
1 + f ′(x)2. In a similar way we can calculate

the acceleration a of the end-effector as the second time
derivative of the curvilinear abscissa:

a =
d2s

dt2
=

dv

dt
=

d

dt
(λẋ) = λ′(x)ẋ2 + λ(x)ẍ (13)

where:

λ′(x) =
f ′(x)f ′′(x)

λ(x)
(14)

Making explicit (13) with respect to ẍ we have:

ẍ =
a(t)− λ′(x)ẋ2

λ(x)
= A(x, ẋ, t) (15)

The differential equation (15) can be numerically integrated,
if the acceleration a(t) is known; in this way it is possible
to determine the functions x, ẋ e ẍ versus time, which
represent the horizontal components of the end-effector
position, velocity and acceleration. The corresponding vertical
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Fig. 4. Trajectory defined in Cartesian form.

components can be easily calculated using the following
relationships:

y = f(x)

ẏ =
dy

dt
=

dy

dx

dx

dt
= f ′(x)ẋ

ÿ =
d2y

dt2
= f ′′(x)ẋ2 + f ′(x)ẍ

(16)

B. Trajectory Defined in Polar Coordinates

When using polar coordinates the trajectory is defined by
the function ρ = g(α), shown in Fig. 5; assuming the
initial position Pi(αi, ρi) and the final position Pf (αf , ρf )
are known, the length L of the trajectory is calculated by the
following integral:

L =

∫ L

0

ds =

∫ αf

αi

g(α)dα (17)

Proceeding in a similar manner to the previous case, it is
possible to calculate the velocity and acceleration of the
end-effector:

v =
ds

dt
=

ds

dα

dα

dt
= g(α)α̇ (18)

a =
d2s

dt2
=

dv

dt
=

d

dt
(gα̇) = g′(α)α̇2 + g(α)α̈ (19)

The differential equation that is obtained is then:

α̈ =
a(t)− g′(α)α̇2

g(α)
= B(α, α̇, t) (20)

The solution of (20) gives the angular coordinate α and
its derivatives versus time; the radial coordinate ρ and its
derivatives can be calculated by means of the formulas given
below:

ρ = g(α)

ρ̇ =
dρ

dt
=

dρ

dα

dα

dt
= g′(α)α̇

ρ̈ =
d2ρ

dt2
= g′′(α)α̇2 + g′(α)α̈

(21)

Transforming in Cartesian coordinates, it is immediate to
obtain the position, velocity and acceleration components
along the x and y axes.
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Fig. 5. Trajectory defined in polar coordinates.
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C. Trajectory Defined in Parametric Form

In many cases of practical interest the trajectory can be
defined in parametric form by means of two equations of the
type: {

x = x(γ)
y = y(γ)

(22)

where γ is the parameter. As usual, it is necessary to
specify the initial position Pi(xi, yi) and the final position
Pf (xf , yf ) of the end-effector, using the corresponding
Cartesian coordinates (Fig. 6).

Recalling that ds =
√

x′(γ)2 + y′(γ)2dγ, the length L of
the trajectory can be calculated through the relation:

L =

∫ L

0

ds =

∫ γf

γi

√
x′(γ)2 + y′(γ)2dγ (23)

where γi and γf indicate the parameter values corresponding
to the initial and final positions, respectively.

Defining now the function F (γ) =
√

x′(γ)2 + y′(γ)2 the
velocity v can be calculated as in the previously analyzed
cases:

v =
ds

dt
=

ds

dγ

dγ

dt
= F (γ)γ̇ (24)

As regards the acceleration a, we use the following
relationship:

a =
d2s

dt2
=

dv

dt
=

d

dt
(F γ̇) = F ′(γ)γ̇2 + F (γ)γ̈ (25)

where:

F ′(γ) =
x′(γ)x′′(γ) + y′(γ)y′′(γ)

F (γ)
(26)

Proceeding as usual, the differential equation that is obtained
is the following:

γ̈ =
a(t)− F ′(γ)γ̇2

F (γ)
= C(γ, γ̇, t) (27)

The integration of the differential equation (27) gives the
parameter γ and its time derivatives versus time. The Cartesian
components of the end-effector position are determined easily
by (22); by differentiation, the velocity and acceleration
components can be obtained.
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Fig. 6. Trajectory defined in parametric form.

TABLE I
END-EFFECTOR COORDINATES AND CORRESPONDING VALUES

OF THE PARAMETER γ

Parameter Point x y
γ0 = 0 P0 x0 y0
γ1 = 1/n P1 x1 y1

...
...

...
...

γk = k/n Pk xk yk
...

...
...

...
γn = 1 Pn xn yn

D. Trajectory Defined by Points

In many practical cases is difficult to provide an analytical
expression for the trajectory and, therefore, it is preferred
assign the curve to be followed through a series of points.
With reference to Fig. 7, let us suppose to use n + 1 points
Pk (k = 0, 1, . . . , n), defined by the corresponding Cartesian
coordinates. We can associate to each point an arbitrary
parameter γk and assume, for convenience, that this parameter
is between 0 and 1, so that the values γ0 = 0 e γn = 1
correspond to the initial point P0 and the final point Pn of
the trajectory respectively. Again for convenience, we adopt
an uniform spacing (Δγ = 1/n) for the parameter, in order
to obtain the situation shown in Table I.

By associating the values of the parameter γ to the abscissas
xk it is possible to build by points the function x = x(γ); in
a similar way the function y = y(γ) can be generated by
associating the values of the parameter γ to the ordinates yk.

To to ensure that the two functions are continuous together
with their derivatives, we can perform a cubic splines
interpolation [2]; using this approach, we obtain two functions
similar to those defined in (22) and therefore the trajectory is
again defined in parametric form.

The end-effector position, velocity and acceleration
components along the x and y axes can be calculated
according to the already described procedures. It should be
noted that the interpolation by cubic splines is convenient,
since it allows to define complex trajectories using a limited
number of points.

Moreover, by implementing the procedure on the computer,
the trajectory can be easily changed, by varying the
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Fig. 7. Trajectory defined by points, using a cubic spline intepolation.



International Journal of Mechanical, Industrial and Aerospace Sciences

ISSN: 2517-9950

Vol:9, No:5, 2015

831

1δ

2

2

dt

sd

3

3

dt

sd

Tt /

Tt /

2δ 3δ 4δ 5δ 6δ 7δ

Fig. 8. Trapezoidal motion law (acceleration and jerk diagrams).

coordinates of some points, so as to meet the demands of
the technological process in which the robot is inserted.

IV. END EFFECTOR MOTION LAW ON THE TRAJECTORY

In Section III it was stated that, in order to calculate
the motion of the robot, it is necessary to define the
function s = s(t) that defines the curvilinear abscissa of
the end-effector along the trajectory; this function can be
defined in analytical form by means of various mathematical
expressions.

In the case where the motion law of the end-effector along
the trajectory is constituted by three stages (acceleration,
constant speed and deceleration), trapezoidal (or modified
trapezoidal) acceleration profiles could be used; as is known,
these profiles are well established in the technical literature
and they are commonly employed for the design of cam
mechanisms. For motion laws with a greater number of stages
is necessary to use more complex calculation procedures,
based on spline functions [3] [4] [5].

As regards the trapezoidal laws, we recall that they have
an acceleration diagram consisting of seven intervals (Fig. 8);
the duration of each time interval ti is defined by the user
and it is usually expressed as fraction δi = ti/T of the total
motion time T , which correspond to the traveling time of the
end-effector along the trajectory.

The 2nd and the 6th time interval have constant acceleration,
respectively with values amax and amin; the 4th interval
correspond to the constant velocity stage and therefore the
acceleration is null; in the odd intervals (1st, 3rd, 5th and
7th) the acceleration varies linearly versus time, so that the
discontinuities in the diagram are eliminated.

The total acceleration time ta and the total deceleration time
td are respectively:

ta =

3∑
i=1

ti td =

7∑
i=5

ti (28)

Differentiating the acceleration with respect to time, we
obtain the jerk function j(t) = da/dt = d3s/dt3 whose

1δ
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2

dt

sd

Tt /

2δ 3δ 4δ 5δ 6δ 7δ

3

3

dt

sd

Tt /

Fig. 9. Modified trapezoidal motion law (acceleration and jerk diagrams).

diagram, shown in Fig. 8, has discontinuities at the points
of transition from one interval to the next.

To eliminate some of these discontinuities the rectilinear
functions are replaced with arcs of sinusoid, thus obtaining the
modified trapezoidal acceleration and jerk curves represented
in Fig. 9.

The maximum and minimum values of the acceleration
are determined by imposing the following conditions on the
displacement s and on the velocity v:

s(T ) = L v(T ) = 0 (29)

These relationships generate a linear system of two equations,
whose solution gives the maximum acceleration amax and the
minimum amin of the end-effector along the trajectory (for a
full discussion of this topic see [6]). As final remark, we can
observe that the trapezoidal functions allow the designer to
generate various types of motion profiles, simply by varying
the durations of the time intervals ti.

V. EXAMPLES OF NUMERICAL SIMULATIONS

In order to illustrate the calculation procedure described in
the previous sections, this paragraph shows some examples of
motion simulations on different trajectories. The calculations
have been developed for robots with different geometric
properties and using different motion laws (see Table II).

All numerical simulations are carried out by means of a
computer program, purposely developed by the author to allow
an easy planning of the robot motion.

For each of the four simulations we have reported:
• the graphical representation of the workspace and the

end-effector trajectory;
• the acceleration and jerk diagrams of the end effector

motion law;
• the angular position, velocity and acceleration diagrams

for both robot links.
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SIMULATION EXAMPLE NO.1: TRAJECTORY IN CARTESIAN FORM
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Fig. 10. Simulation results: a) Workspace of the robot and end-effector trajectory; b) Acceleration diagram d2s/dt2; c) Jerk diagram d3s/dt3; d, e) First and
second link angular positions ϑ1(t) and ϑ2(t); f, g) First and second link angular velocities ϑ̇1(t) and ϑ̇2(t); h, i) First and second link angular accelerations
ϑ̈1(t) and ϑ̈2(t).
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SIMULATION EXAMPLE NO.2: TRAJECTORY IN POLAR FORM
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Fig. 11. Simulation results: a) Workspace of the robot and end-effector trajectory; b) Acceleration diagram d2s/dt2; c) Jerk diagram d3s/dt3; d, e) First and
second link angular positions ϑ1(t) and ϑ2(t); f, g) First and second link angular velocities ϑ̇1(t) and ϑ̇2(t); h, i) First and second link angular accelerations
ϑ̈1(t) and ϑ̈2(t).
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SIMULATION EXAMPLE NO.3: TRAJECTORY IN PARAMETRIC FORM
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Fig. 12. Simulation results: a) Workspace of the robot and end-effector trajectory; b) Acceleration diagram d2s/dt2; c) Jerk diagram d3s/dt3; d, e) First and
second link angular positions ϑ1(t) and ϑ2(t); f, g) First and second link angular velocities ϑ̇1(t) and ϑ̇2(t); h, i) First and second link angular accelerations
ϑ̈1(t) and ϑ̈2(t).
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SIMULATION EXAMPLE NO.4: TRAJECTORY DEFINED BY POINTS
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Fig. 13. Simulation results: a) Workspace of the robot and end-effector trajectory; b) Acceleration diagram d2s/dt2; c) Jerk diagram d3s/dt3; d, e) First and
second link angular positions ϑ1(t) and ϑ2(t); f, g) First and second link angular velocities ϑ̇1(t) and ϑ̇2(t); h, i) First and second link angular accelerations
ϑ̈1(t) and ϑ̈2(t).
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TABLE II
PARAMETERS USED FOR SIMULATION EXAMPLES

Description Example No. 1 Example No. 2 Example No. 3 Example No. 4

1st link length l 1 =  300 mm l 1 =  350 mm l 1 =  350 mm l 1 =  300 mm

2nd link length l 2 = 350 mm l 2 = 220 mm l 2 = 200 mm l 2 = 240 mm

Rotation limits (1st link) ϑ1min = −100°; ϑ1max = +150° ϑ1min = −90°; ϑ1max = +90° ϑ1min = −90°; ϑ1max = +150° ϑ1min = −100°; ϑ1max = +90°

Rotation limits (2nd link) ϑ2min = −90°; ϑ2max = +160° ϑ2min = −90°; ϑ2max = +150° ϑ2min = 0°; ϑ2max = +180° ϑ2min = −90°; ϑ2max = +150°

Starting point P 1 = (−0.3, 0.435) [m] P 1 = (0.29, −0.345) [m] P 1 = (−0.097, 0.435) [m] P 1 = (−0.15, 0.4) [m]

End point P 2 = (0.5,−0.325) [m] P 2 = (−0.086,0.488) [m] P 2 = (0.367,−0.132) [m] P 2 = (0.3,−0.2) [m]

Trajectory length L  = 1.544 m L  = 1.152 m L  = 1.025 m L  = 1.290 m

Motion time T  =  4 s T  =  4 s T  =  4 s T  =  4 s

Acceleration profile Modified trapezoid Modified trapezoid Modified trapezoid Modified trapezoid

Parameters δ i 1/7 - 1/7 - 1/7 - 1/7 - 1/7- 1/7 - 1/7 1/8  - 0 - 3/8 - 0 - 3/8 - 0 - 1/8 1/5  - 0 - 1/5 - 1/5 - 1/5 - 0 - 1/5 1/4  - 0 - 1/4 - 0 - 1/4 - 0 - 1/4

The first simulation has been performed using a trajectory
in Cartesian form generated by the following 3rd degree
polynomial function:

y(x) = a3x
3 + a2x

2 + a1x+ a0 (30)

where the coefficients assume the following values:
a3 = −11m−2, a2 = 1.2m−1, a1 = 0.9 and a0 = 0.3m.

For the second simulation the trajectory has been defined
by an arc of ellipse in polar form whose equation is:

	(α) =
ab√

(a sinα)2 + (b cosα)2
(31)

where a = 0.4m, b = 0.5m and −50◦ ≤ α ≤ 100◦.
For the third simulation the trajectory has been defined by

the following parametric equations:

x(γ) = 0.2 sin γ + 0.125γ
y(γ) = 0.36 cos γ + 0.03γ + 0.1

(32)

where −0.3 ≤ γ ≤ 3.5. Finally, for the fourth simulation, we
have used trajectory defined by the knots visible in Fig. 13a;
a cubic splines interpolation has been employed, as described
in Section III D.

VI. CONCLUSIONS AND FUTURE DEVELOPMENTS

The paper presented a calculation method that allows an
easy motion planning of a SCARA robot on a given trajectory.
The work led to the development of an easy to use software
application, that can be used in all industrial applications
where a frequent re-programming of a SCARA robot is
required. The motion laws of the actuators are processed by
the calculation program in graphical form, so that the user
can verify the maximum values of velocity and acceleration.
The generated files are stored on the PC hard disk in tabular
form and they can be easily exported in ASCII format in
order to be subsequently loaded into the electronic motion
controller of the robot. Currently the software is developed
for robot SCARA type; however, since the calculation method
is general, it is possible to extend the code also for robots with
different kinematics architectures.

APPENDIX A

The jacobian matrix J of a SCARA robot is given by the
following expression:

J =

[ −l1S1 − l2S12 −l2S12

l1C1 + l2C12 l2C12

]

Its inverse is:

J−1 =
1

l1l2S2

[
l2C12 l2S12

−l1C1 − l2C12 −l1S1 − l2S12

]

Its time derivative can be calculated as:

J̇ =

[ −l1ϑ̇1C1 − (ϑ̇1 + ϑ̇2)l2C12 −l2(ϑ̇1 + ϑ̇2)C12

−l1ϑ̇1S1 − (ϑ̇1 + ϑ̇2)l2S12 −l2(ϑ̇1 + ϑ̇2)S12

]
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