
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

555


Abstract—Grid is an environment with millions of resources

which are dynamic and heterogeneous in nature. A computational
grid is one in which the resources are computing nodes and is meant
for applications that involves larger computations. A scheduling
algorithm is said to be efficient if and only if it performs better
resource allocation even in case of resource failure. Resource
allocation is a tedious issue since it has to consider several
requirements such as system load, processing cost and time, user’s
deadline and resource failure. This work attempts in designing a
resource allocation algorithm which is cost-effective and also targets
at load balancing, fault tolerance and user satisfaction by considering
the above requirements. The proposed Budget Constrained Load
Balancing Fault Tolerant algorithm with user satisfaction (BLBFT)
reduces the schedule makespan, schedule cost and task failure rate
and improves resource utilization. Evaluation of the proposed
BLBFT algorithm is done using Gridsim toolkit and the results are
compared with the algorithms which separately concentrates on all
these factors. The comparison results ensure that the proposed
algorithm works better than its counterparts.

Keywords—Grid Scheduling, Load Balancing, fault tolerance,

makespan, cost, resource utilization.

I. INTRODUCTION AND RELATED WORKS

HE computational power of individual computers is
rapidly increasing from time to time. For problem solving

in the fields like earth system sciences, financial modeling and
high energy physics, the approaches involving computation
are widely used. But for these applications, the computational
power of a single computer is not sufficient. It has limited
resources and is not suitable for computation-intensive
applications. In order to meet the computational demand,
powerful distributed and parallel systems with more number
of processors are developed. But few applications like
parameter search problems need more number of resources
which led to a solution of collecting and utilizing distributed
resources owned by different institutions and domains. This
distributed computing infrastructure is called grid.

Based on functionality, grid can be classified as
computational grid and data grid. The resources involved in
computational grids are computational resources such as
processors. It is mainly used for computation intensive

Dr.P.Keerthika is with the Computer Science and Engineering Department,

Kongu Engineering College, Perundurai, Erode-638052, Tamilnadu, India
(phone: 04294226560; e-mail: keerthikame@gmail.com).

Dr. P. Suresh is with the Information Technology Department, Kongu
Engineering College, Perundurai, Erode-638052, Tamilnadu, India (phone:
04294226570; e-mail: sureshme@ gmail.com).

applications and data intensive applications. The application
which requires more time for computation are termed as
computation intensive applications and the applications which
requires more time for data retrieval than computation are
termed as data intensive applications. In data grid, the
resources are storage resources like memory and mainly deal
with data storage.

A grid system comprises of a scheduler, grid portal and a
Grid Information Service (GIS). The scheduler or the grid
broker is responsible for mapping of tasks to its suitable
resources. It allows the users to request for resource allocation.
This process is termed as scheduling. Scheduling can be
varied as static scheduling and dynamic scheduling. The Users
communicates with the scheduler through grid portal. They
have several Quality of Service (QoS) requirements of their
task towards execution. The QoS requirements can be based
on processing power, operating system, architecture, deadline,
cost of execution and bandwidth. Apart from scheduling, a
grid must ensure many aspects such as balanced load of
resources, failure handling mechanisms, security of data and
user satisfaction. These several independent issues make grid
scheduling as a NP-complete problem [1].

The schedulers can be deployed level by level. The local
scheduler is deployed within a cluster and is responsible for
scheduling within the cluster. The scheduler at the top level is
the grid broker. Scheduling can be centralized, decentralized
and hierarchical. In centralized scheduling, the scheduler has
more control over the resources. In decentralized scheduling,
there is no central entity to have control over the resources and
the scheduling decisions are made individually. In hierarchical
scheduling, different levels of schedulers are deployed and
scheduling is done at all the levels.

The proposed algorithm suits for computational grids with
computing resources and scheduling is done by concentrating
on load balancing, fault tolerance and several QoS
requirements such as budget or cost and user deadline. The
remaining part of this paper is organized with materials and
methods which explain the works done previously with these
factors and the newly proposed algorithm’s architecture and
nature. Then the experimental results are shown with
comparisons and conclusions.

The grid computing environment comprises of
heterogeneous resources which are distributed geographically.
Hence, identification of a suitable resource for the submitted
task is a tedious process. Many researchers have proposed
algorithms for mapping of tasks to resources. Some of them

A Budget and Deadline Constrained Fault Tolerant
Load Balanced Scheduling Algorithm for

Computational Grids
P. Keerthika, P. Suresh

T

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

556

concentrate on user satisfaction, some on load balancing and
some on fault tolerance.

An algorithm is proposed in [1] that begins with Min-min
algorithm if the number of available resources is odd and
starts with Max-min algorithm if the number of available
resources is even. The remaining tasks are assigned to their
appropriate resources by one of the two strategies,
alternatively.

A Minimum Time to Release Scheduling Algorithm [2] has
been discussed which depends on the time to release (TTR). It
includes the processing time, waiting time and transfer time of
input and output data to and from the resources. Based on the
TTR value, the tasks are arranged in descending order and
scheduled to resources with minimum TTR. This algorithm
performs better when compared to First Come First Serve
(FCFS) Scheduling and Min-min algorithms.

A Divided Min-min Scheduling algorithm [3] classifies jobs
according to their ETC values as average, minimum and
maximum. Then, it divides the jobs into same size segments
and schedules the large job segment first and then the small
job segment. It uses Min-min algorithm for scheduling.
Different from Min-min, it sorts jobs before scheduling, which
means that the job with long execution time will be scheduled
earlier.

A fault tolerance service based on different types of failures
satisfying the QoS requirements is proposed in [4]. It has a
fault detector, fault manager, resource manager, resource
allocation manager, meta computing directory service and
execution time predictor. It allocates resources based on QoS
requirements and performs job migration in case of occurrence
of failures.

A Minimum Total Time to Release (MTTR) algorithm [5]
reduces the time to release value by allocating computational
resource based on job requirements, characteristics and
hardware features of resources. It adopts a check pointing
based fault tolerance and the check points are based on failure
rate. It proposes a Replica Resource Selection Algorithm to
provide checkpoint replication service.

In [6], the root cause of failures is studied from the real time
data and categorizes them as human, environment, network,
software and hardware. The failure rate are analyzed as a
function of system and node and identified that the failure
rates do not grow significantly faster than system size. Failure
rate is analyzed at different time scales and statistical
properties of time between failures are also defined.

The performance of most commonly used fault-tolerant
techniques in grid computing is analyzed in [7]. The metrics
such as throughput, turnaround time, waiting time and
network delay are considered for evaluation. The average
percentage of faults and the workloads are varied to analyze
the behavior of these techniques. It analyses the task level
fault tolerance mechanisms such as retrying, alternate
resource, check pointing and replication.

The importance of fault tolerance for achieving reliability is
surveyed [8] by all possible mechanisms such as replication,
check pointing and job migration. It extends the cost
optimization algorithm to optimize the time without incurring

additional processing expenses. This is accomplished by
applying the time-optimization algorithm to schedule task
farming or parameter-sweep application jobs on distributed
resources having the same processing cost.

In [9], a fault tolerant scheduling architecture that employs
job replication is proposed. The algorithm determines
adaptively the number of job replicas based on resource failure
history. Then, it schedules the replicas to efficient resources
using the backup resource selection algorithm.

A cost optimization scheduling algorithm is described in
[10] to optimize the cost to execute the jobs. It optimizes time,
keeping the cost of computation at minimum. It also reduces
the execution time of the jobs. But in this algorithm failure
rate of the resources and user deadline of the jobs are not
considered.

A static heuristic approach [11] is proposed for scheduling
independent tasks in grid environment which considers user
satisfaction. The requirements of tasks are necessary to
identify suitable resources. The proposed scheduling algorithm
considers both system and application aspects i.e., the factors
to improve the system performance and utilization of the
resources and throughput. It makes use of the user deadline of
tasks, data transfer time and the computation time for each
<job, resource > pair for making scheduling decisions.

A grouping based scheduling algorithm [12] is proposed
which considers user deadline and reduces communication
time by adopting the grouping technique. The grouping
strategy followed in this algorithm groups the fine grained
tasks to coarse grained tasks based on the user deadline and
computation time.

An efficient load balancing and grouping based job
scheduling approach for grouping of fine-grained jobs is
proposed in [13]. Its main goal is to maximize resource
utilization and minimize processing time of tasks. It schedules
tasks based on number of tasks available at a particular time
and resource capability. Independent fine-grained jobs are
grouped together based on the dynamically specified group
and resource characteristics.

 A neighbour level load balancing mechanism is proposed
in [14]. A more accurate load measurement method is applied
to determine the load of each resource. A load balancing
algorithm is executed based on the information exchanged
between neighbour nodes. If any node is overloaded then the
load on every neighbour’s node are evaluated and finds
underloaded nodes. Then the task is shifted to underloaded
nodes.

A hybrid load balancing policy which integrates static and
dynamic load balancing technologies is proposed in [15].
Essentially, a static load balancing policy is applied to select
effective and suitable node sets. It reduces the unbalanced load
probability caused by assigning tasks to ineffective nodes.
When a node reveals the possible inability to continue
providing resources, the dynamic load balancing policy will
determine whether the node in question is ineffective to
provide load assignment. The system will then obtain a new
replacement node within a short time, to maintain system
execution performance.

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

557

A system level load balancing [16] is proposed where a
distributed load balancing model transforms grid topology into
a forest structure. A two level strategy is proposed to balance
the load among resources of computational grid. In level 0,
each cluster manager is associated with a physical cluster of
the grid. The cluster manager is responsible for maintaining
the workload information related to each one of its worker
nodes, estimating the workload of associated cluster and
diffusing this information to other cluster managers, deciding
to start intra-cluster load balancing, sending the load balancing
decisions to the worker nodes which they manage for
execution and initiating the inter-cluster load balancing. In
level 1, the worker nodes of a grid that are linked to their
respective clusters are determined. Each node at this level is
responsible for maintaining its workload information, sending
this information to its cluster manager and performing the load
balancing decided by its cluster manager. Load balancing
schemes for grid environment [17] is proposed that does not
follow the changes in the system status or set fixed threshold
for controlling the load.

A dynamic and distributed protocol is designed in [18]. The
grid is partitioned into a number of clusters. Each cluster has a
coordinator to perform local load balancing decisions and also
to communicate with other cluster coordinators across the grid
to provide inter-cluster load transfers. The distributed protocol
uses the clusters of the grid to perform local load balancing
decision within the clusters and if this is not possible, load
balancing is performed among the clusters under the control of
cluster coordinators.

A fault tolerant hybrid load balancing algorithm [19] is
proposed which is carried out in two phases: static load
balancing and dynamic load balancing.In the first phase, a
static load balancing policy selects the desired effective sites
to carry out the submitted job. If any of the sites is unable to
complete the assigned job, then a new site will be located
using the dynamic load balancing policy. The assignment of
jobs must be adjusted dynamically in accordance with the
variation of site status. The variation in site status can be
identified at any of the cases when the grid scheduler receives
the message that a certain site can no longer provide resources
or when job execution on a certain site exceeds the expected
execution time or when the site is overloaded.

A load balancing mechanism, which works in 2 phases, is
proposed in [20]. In the first phase, job allocation is done
based on a defined criterion i.e., the heuristic begins with the
set of all unmapped tasks. Then the set of minimum
completion times is found, like Min-min heuristic. In second
phase, heuristic algorithm works based on machines workload,
which consists of two steps.

In the first step, for each task the minimum, second
minimum completion time and minimum execution time are
found. Then the difference between these two minimum
completion time values is multiplied by the amount of
minimum completion time and then divided by minimum
execution time. In the second step, if the number of the
remaining tasks is not less than threshold, then the heuristic
algorithm is executed to balance the load. Finally, the task

which has the criteria value as maximum will be selected and
removed from the set of unmapped tasks.

A dynamic, distributed load balancing scheme for a grid
environment is proposed [21] which provides deadline control
for tasks. Periodically the resources check their state and make
a request to the grid broker according to the change of state in
load. Then, the grid broker assigns gridlets based on deadline
request and load. In [22], a hybrid algorithm is proposed for
optimal load sharing with two components such as hash table
and distributed hash table. It finds the nearest node and shares
the load of a highly loaded node to lightly loaded node. It
proves to provide the best tradeoff between space usage and
lookup time. All these algorithms mentioned in literature
concentrate on load balancing, fault tolerance and user
satisfaction to an extent. But none of them considers all these
factors combined. This research proposes a Budget
Constrained Load Balancing Fault Tolerant Algorithm
(BLBFT) which considers all these factors during scheduling.
The architecture and the algorithm of BLBFT are explained
below. In our previous work [23], we have proposed a new
Bicriteria scheduling algorithm that considers both user
satisfaction and fault tolerance. The pro-active fault tolerant
technique is adopted and the scheduling is carried out by
considering the deadline of gridlets submitted. The main
contribution of this paper includes achieving user satisfaction
along with fault tolerance and minimizing the makespan of
jobs. In our previous work [24], we have proposed a multi-
criteria scheduling algorithm that considers load balancing,
fault tolerance and user satisfaction as a centralized approach.

In [25], we have proposed an efficient fault tolerant
scheduling algorithm (FTMM) which is based on data transfer
time and failure rate. System performance is also achieved by
reducing the idle time of the resources and distributing the
unmapped tasks equally among the available resources.

A Prioritized user demand algorithm is proposed [26] that
considers user deadline for allocating jobs to different
heterogeneous resources from different administrative
domains. It produces better makespan and more user
satisfaction but data requirement is not considered. While
scheduling the jobs, failure rate is not considered. So the
scheduled jobs may be failed during execution.

A work based on user satisfaction and hierarchical load
balancing is proposed [27] that consider user demands and
load balancing. It minimizes the response time of the jobs and
improves the utilization of the resources in grid environment.
By considering the user demand of the jobs, the scheduling
algorithm also improves the user satisfaction.

II. MATERIALS AND METHODS

A. Problem Formulation

The proposed algorithm follows a centralized scheduling
architecture depicted in Fig. 1 where the scheduling is done
only at the grid broker. Also it follows a static batch mode
scheduling in which the tasks are scheduled in batches and
when a task is allocated with a resource, it will not be
changed. Hence the proposed algorithm is static, batch mode,

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

558

centralized scheduling algorithm.

Fig. 1 Centralized Scheduling Architecture

Fig. 2 BLBFT Architecture

B. Proposed BLBFT Scheduling Architecture

The scheduling architecture BLBFT algorithm is depicted
in Fig. 2. The users submit the tasks to the grid broker through
grid portal. The tasks are submitted along with the QoS
requirements such as task completion deadline and execution
cost. The grid portal submits the tasks to the grid
scheduler/broker. The architecture has a Grid Information
Service (GIS) which collects the information of all the
resources involved in grid such as initial failure rate, number
of tasks submitted, number of tasks successfully completed,
availability time and processing capability in MIPS. The
scheduler has four components.

The first is the fault handler module which calculates the
failure rate of each resource and checks whether the selected

resource has less failure rate. The second component is the
deadline control module which takes care of user satisfaction
in terms of satisfied deadline for task completion. The third is
the load balancing module which updates the load of each
resource and keeps control of balanced load. The fourth
scheduler component is the budget control module which
ensures minimized execution cost. This algorithm is
implemented using the GridSim which follows the architecture
depicted in Fig. 3.

Fig. 3 GridSim Architecture

C. Proposed BLBFT Algorithm

The proposed BLBFT algorithm follows a static batch mode
scheduling strategy in a centralized fashion. The algorithm is
implemented at the grid broker level. It works as follows.

At the time of task submission to grid portal, the user
submits the deadline and budget for task completion. The GIS
receives the information of all the resources involved in grid
such as computation cost. The algorithm makes use of these
resource information and the user requirements and performs
scheduling.

The load balancing module performs calculation of load and
threshold value at all levels as follows. The load of each
processing element is calculated by using the weighted sum of
squares which is given by,

௜ሻܧሺܲ݀ܽ݋ܮ ൌ ට∑ ൫ܽ௞ܮ௞
ଶ൯௡

௞ୀଵ (1)

whereܮ௞ is the load attribute considered in our algorithm24.
The load attribute considered in our algorithm is the CPU
utilization in seconds. Hence the load of PE is given by,

௜ሻܧሺܲ݀ܽ݋ܮ ൌ
∑ ெூೕ
೙
ೕసబ

ெூ௉ௌ೔
 (2)

where n is the number of tasks allocated to ܲܧ௜. The average
load of each machine is calculated with the loads of PE’s such
as

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

559

௜ሻܯሺܮܣ ൌ
∑ ௅௢௔ௗሺ௉ாೖሻ
೙
ೖసభ

௡
 (3)

where n is the number of PE’s under Machine ݅ . The average
load of each resource is calculated by,

ሺܴ௜ሻܮܣ ൌ
∑ ஺௅ሺெೖሻ
೙
ೖసభ

௡
 (4)

where n is the number of machines under resource ݅.
The average load of the system/grid broker is calculated as,

ܮܣ ൌ
෌ ஺௅	ሺோೖሻ

೙
ೖసభ

௡
 (5)

where n is the number of resources in the system. After
calculating the load of the resources, threshold value at the
grid broker level is calculated as,

Ω	 ൌ 	ܮܣ	 ൅ (6) 			ߪ	

where

	ߪ ൌ 	ට
∑ ሺ஺௅	ሺோ೔ሻି஺௅ሻమ
ಿ
೔సభ

ே
 (7)

whereN is the number of resources in the system. In terms of
gridsim the tasks are represented as gridlets.

The information of the gridlet such as gridlet size in million
instructions (MI) is used to calculate the Expected Time to
Compute matrix for all gridlets in all resources by using,

൫ܥܶܧ ௜ܶ, ௝ܴ൯ ൌ
௅௘௡௚௧௛೔
஼௔௣௔௖௜௧௬ೕ

 (8)

The completion time matrix is calculated for each gridlet in
each resource as,

൫ܶܥ ௜ܶ, ௝ܴ൯ ൌ ൫ܥܶܧ	 ௜ܶ, ௝ܴ൯ ൅ 	ܴܶ൫ ௝ܴ൯ (9)

and the total completion time is calculated as,

൫ܶܥܶ ௜ܶ, ௝ܴ൯ ൌ ൫ܶܥ ௜ܶ, ௝ܴ൯ ൅ ൫ܶܯܥ ௜ܶ, ௝ܴ൯ (10)

The Budget control module calculates the cost matrix for

executing each gridlet in each resource as,

,൫ܶ݅ܶܵܥ ܴ݆൯ ൌ ,൫ܶ݅ܥܶܧ	 ܴ݆൯ ൈ ൫ܴ݆൯ (11)ܵܥ

The cost of execution and the expected budget from the user

are compared and a suitable resource is selected.
The fault handler module calculates the failure rate of each

resource with the information such as number of gridlets
submitted and successfully completed. It is calculated using,

൫ܴܨ ௝ܴ൯ ൌ 	
்௙

ܾݑݏܶ
 (12)

where ௙ܶis the number of tasks failed to be executed previously
in resource j and ௦ܶ௨௕is the number of tasks submitted to
resource j for execution. The ready time of each resource is

calculated by,

ܴܶ൫ ௝ܴ൯ ൌ ∑ ሺܥܶܧ ௜ܶ, ௝ܴሻ
௡
௜ୀଵ (13)

where n is the number of tasks submitted to ௝ܴ .

TABLE I
SCHEDULING PARAMETERS AND THEIR VALUES

Parameters Values

No. of Gridlets 512

Gridlet Length (MI) 50,000 to 1,00,000

I/P file size 50 to 500 MB

O/P file size 100 to 700 MB

III. RESULTS AND DISCUSSION

A. Experimental Setup

The proposed algorithm aims at reducing the makespan and
to schedule efficiently with fault tolerance and balanced load.
Also, the user satisfaction is considered with deadline control
and budget parameters. The fault tolerance is ensured with
improved hit rate and the user satisfaction is ensured with
increased deadline hit count and reduced processing/execution
cost. The balanced load is ensured with highest average
resource utilization. Gridsim 5.0 toolkit is used for evaluating
the proposed algorithm based on these factors.
 Number of Resources: 16
 Number of Tasks: 512

The gridlets assumed are independent, computationally
intensive and arrive randomly and follows Poisson process. It
is assumed that each resource can execute a single gridlet at a
time. The scheduling parameters and the resource
characteristics considered for scheduling are given in Tables I
and II respectively.

B. Performance Metrics

The proposed algorithm is designed to satisfy the user with
respect to deadline and budget, balanced load and fault
tolerance. The performance metric used to evaluate the
proposed BLBFT algorithm are makespan, hit count, deadline
hit count, average resource utilization and execution cost.
These performance metrics are defined below.

Makespan: This metric is for evaluating the overall
performance of the scheduling algorithm. It is defined as the
overall completion time of a batch of tasks and is given by,

݊ܽ݌ݏ݁݇ܽܯ ൌ ,൛ܴܶ൫ܴ݆൯ൟݔܽ݉ ∀	j ∊ n (14)

It is used to measure the ability of grid to accommodate

gridlets in less time.

TABLE II
GRID RESOURCE CHARACTERISTICS

Resources Characteristics

No. of Machines 1-4

No. of PE’s per machine 1-2

PE ratings 5 to 50 MIPS

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

560

Hit count: Hit count is a new metric introduced that

represents the number of tasks successfully completed in a
batch of tasks. Here, each batch is assumed to have 512 tasks
and the hit count gives the number of tasks successfully
completed out of 512.

Deadline Hit Count: This is a new metric introduced which
represents the number of tasks successfully completed within
the given user deadline.

Average Resource Utilization: This metric is newly
introduced in order to measure the load balancing which can
be calculated as follows. The utilization of each resource can
be calculated by (15):

ܴܷ൫ ௝ܴ൯ ൌ 	
∑ ெூ೔
೘
೔సబ

ெூ௉ௌೕൈ஺்ೕ
ൈ 100 (15)

The average resource utilization of the system can be
calculated using (16):

	ܷܴܣ ൌ 	
ଵ

ே
∑ ܴܷ൫ ௝ܴ൯
ே
௝ୀଵ (16)

where N is the number of resources.

Processing Cost: This metric is newly introduced in order
to measure the algorithm’s performance based on user
satisfaction based on budget.

C. Experimental Results

The proposed BLBFT algorithm is compared with the Min-
min algorithm which stands as a benchmark static heuristic
algorithm for grid scheduling and the Fault Tolerant

Step 1: Get the list of tasks ܶ from the user with their user deadline ܷܦሺ ௜ܶሻ and Budget ܤሺ ௜ܶሻ
Step 2: Get the list of resources ܴ from GIS with the computation cost per second ܵܥ൫ ௝ܴ൯ and initialize the deadline hit count and hit count values for all
resources.
Step 3: Construct ܥܶܧ൫ ௜ܶ, ௝ܴ൯matrix of size m×n when m is the number of tasks and n is the number of resources.
Step 4: For all resources ܴj inܴ, where 1≤ j ≤ n, and n denotes number of resources,
 do
 4.1: Calculate Failure rate
 4.2: Calculate Ready Time
 4.3: Calculate Load of each Processing Element using (1).
 4.4: Calculate Average Load of each machine
 4.5: Calculate Average Load of each resource
 done
Step 5: Calculate Average Load of the system
Step 6: Calculate Balance Threshold
Step 7: Create a list of underloaded resources ܷܴ which hasܮܣሺ ௝ܴሻ 	൏ Ω.
Step 8: For each task in ௜ܶ in queue and for each resource ௝ܴ ,
 do
 8.1: Construct ܶܥሺ ௜ܶ, ௝ܴሻ matrix of size m×n
 8.2: Construct ܶܯܥሺ ௜ܶ, ௝ܴሻ matrix of size m×n
 8.3: Construct ܶܶܥሺ ௜ܶ, ௝ܴሻ matrix of size m×n
 8.4: Construct cost matrix
 done
Step 9: For all task ௜ܶin Task_listܶ,
 do
 9.1: Create lists ܷ ௜ܶభand ܷ ௜ܶమ with resources that has ܶܶܥሺ ௜ܶ, ௝ܴሻ 	൑ ሺ	ܦܷ ௜ܶሻand ܶܶܥሺ ௜ܶ, ௝ܴሻ ൐ ሺ	ܦܷ ௜ܶሻ respectively.

 9.2: Select the resources in ܷ ௜ܶభ with ܶܵܥ൫ ௜ܶ, ௝ܴ൯ ൑ ሺܤ ௜ܶሻ and create lists ܷܤ ௜ܶభand ܷܤ ௜ܶమ. Include the list of resources in ܷ ௜ܶమin ܷܤ ௜ܶమ.

 9.2: Sort the lists ܷܤ ௜ܶభand ܷܤ ௜ܶమ based on ܴܨ൫ ௝ܴ൯of resources in ascending order
 9.3: Create lists ܷܤܮ ௜ܶభand ܷܤܮ ௜ܶమ with the set of underloaded resources from ܷܤ ௜ܶభand ܷܤ ௜ܶమrespectively in order.
 9.4: If entries in ܷܤܮ ௜ܶభ,
 Select the first resource in the list for task ௜ܶ and dispatch ௜ܶto resource ௝ܴand Increment Deadline Hit Count and Hit Count.
 else if entries in ܷܶܤܮ௜మ,
 Select the first resource in the list for task ௜ܶ and dispatch ௜ܶto resource ௝ܴand Increment Hit Count.
 9.5: Remove task ௜ܶfrom Task_list ܶ.
 9.6: Update ܴܶ൫ ௝ܴ൯and ܴܨ൫ ௝ܴ൯ where j is the resource to which the task ௜ܶ is dispatched.
 Done
Step 10: If there are tasks in Task_listܶ,
 Repeat steps from 4.3.
 else
 Compute ݊ܽ݌ݏ݁݇ܽܯ	 ൌ ሼܴܶ൫	ݔܽ݉	 ௝ܴ൯ሽ and

 Compute ݁ݐܴܽݐ݅ܪ	 ൌ 		 ೞ்ೠ೎೎

்ೞೠ್
∀݆݊

 where
 ௦ܶ௨௖௖ is the number of tasks successfully completed by a resource ௝ܴ without any failure and
 ௦ܶ௨௕is the number of tasks failed to be executed by a resource ௝ܴ .

Compute Resource Utilization

 ܴܷ൫ ௝ܴ൯ ൌ 	
ோ்ሺோ௝ሻ

ெ௔௞௘௦௣௔௡
ൈ 100

 Compute Average Resource Utilization

	ܷܴܣ ൌ 	
ଵ

ே
∑ ܴܷ൫ ௝ܴ൯
ே
௝ୀଵ

 endif

BLBFT Scheduling Algorithm

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

561

Algorithm (FTMM) proposed in [25], Bicriteria Scheduling
Algorithm (BSA) [23], LBFT algorithm [24] which is a load
balancing algorithm for proving its performance based on
makespan, hit count, deadline hit count, average resource
utilization and cost.

Fig. 4 Performance based on Makespan (Sec)

The performance comparison of the proposed BLBFT

algorithm based on makespan is shown in Fig. 4. The results
show that the BLBFT has minimized makespan than the other
algorithms.

Fig. 5 Performance based on Hitcount

The performance of BLBFT based on hit count which is the

measure of fault tolerance is shown in Fig. 5. The results show
that the BLBFT algorithm has more number of gridlets
successfully completed without failure.

The results of BLBFT based on deadline hit count are
shown in Fig. 6. It is inferred that when compared with other
algorithms such as Min-min, FTMM, BSA and LBFT, the
proposed BLBFT has increased number of gridlets completed
within user deadline.

The results based on resource utilization is shown in Fig. 7
and it is inferred that the proposed BLBFT algorithm has
better resource utilization than the other algorithms such as
Min-min, FTMM, BSA and LBFT which concentrates
separately on each factor.

Fig. 6 Performance based on Deadline Hitcount

Fig. 7 Performance based on Resource Utilization (%)

Fig. 8 Performance based on Processing Cost

The performance of BLBFT based on processing cost is

shown in Fig. 8. The cost required to execute a batch of tasks
is comparatively less for BLBFT than Min-min, FTMM, BSA
and LBFT algorithms which do not concentrate on processing
cost.

IV. CONCLUSIONS AND FUTURE WORKS

In this work, a budget constrained scheduling algorithm
which mainly concentrates on processing cost is proposed. By
reducing the processing cost, it makes an attempt to satisfy the
user. Along with this cost factor, it also considers user

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

562

deadline of task completion to satisfy the user. With these two
factors considered for user satisfaction, it also takes care of
proper resource utilization and fault tolerance with reduced
makespan.

The efficiency of this algorithm is proved by comparing it
with already existing algorithms which separately concentrates
on these factors based on makespan, hit count, deadline
hitcount, resource utilization and processing cost. The
applications considered in this work are computation
intensive. In future, this can be extended for data intensive
applications. This algorithm follows a centralized approach
and in future, this can be extended in a hierarchical
environment.

REFERENCES
[1] S. Parsa and R.E. Maleki, RASA: A New Grid Task Scheduling

Algorithm, World Applied Sciences Journal, 7 (2009) 152-160.
[2] N. Malarvizhi and V.R. Uthariaraj, A minimum time to release job

scheduling algorithm in computational grid environment, Proceedings of
the IEEE Fifth International Joint Conference on INC, IMS & IDC,
(2009) 13-18, DOI: 10.1109/NCM.2009.373.

[3] Z. Qian, Design of Grid Resource Management System Based on
Information Service, J Computers, 5 (5) (2010) 687-694.

[4] H. Lee, D. Park, M. Hong, S.S. Yeo, S.K. Kim and S.H. Kim, A
resource management system for fault tolerance in grid computing,
Proceedings of the IEEE International Conference on Computational
Science and Engineering, (2009) 609-614, DOI: 10.1109/CSE.2009.257.

[5] M. Nandagopal and V.R.Uthariaraj, Fault tolerant Scheduling strategy
for computational grid environment, Int J Engineering Science and
Technology, 2 (9) (2010) 4361-4372.

[6] B. Schroeder and G.A. Gibson, A large-scale study of failures in high-
performance computing systems, IEEE Trans Dependable and Secure
Computing, 7(4) (2010) 337-350, DOI: 10.1109/TDSC.2009.4.

[7] F.G. Khan, K. Qureshi and B. Nazir,Performance Evaluation of Fault
Tolerance techniques in Grid Computing System, J Computers and
Electrical Engineering, 36 (6) (2010) 1110-1122,
http://dx.doi.org/10.1016/j.compeleceng.2010. 04. 004.

[8] R. Garg and A.K. Singh, Fault Tolerance in grid computing: State of the
art and open issues, Int J Computer Science & Engineering Survey, 2 (1)
(2011) 88-97, DOI:10.5121/ijcses.2011.2107.

[9] M. Amoon, A development of fault- tolerant and scheduling system for
grid computing, GESJ: Computer Science and Telecommunications, 3
(32) (2011) 44-52.

[10] R. Buyya, M. Murshed and D. Abramson, A deadline and budget
constrained cost-time optimization algorithm for Scheduling task
farming applications on global grids, Proceedings of the International
conference on parallel and distributed processing techniques and
applications, (2001) 24–27,
http://arxiv.org/ftp/cs/papers/0203/0203020.pdf.

[11] P. Suresh and P. Balasubramanie, User demand aware scheduling
algorithm for data intensive tasks in grid environment, European Journal
of Scientific Research, 74 (4) (2012) 609-616.

[12] P. Suresh and P. Balasubramanie, Grouping based User Demand Aware
job scheduling Approach for computational Grid, Int J Engineering
Science and Technology, 4 (12) (2012) 4922-4928,
http://www.ijest.info/docs/IJEST12-04-12-093.pdf.

[13] S. Kaur and S. Kaur, Efficient load balancing grouping based job
scheduling algorithm in grid computing, Int J Emerging Trends and
Technology in Computer Science,2(4)(2013) 138-144.

[14] M.A. Salehi, H. Deldari and B.M. Dorri, Balancing Load in a
Computational Grid Applying Adaptive, Intelligent Colonies of Ants,
Informatica, 33 (2) (2008) 159-167.

[15] K.Q. Yan, S.S. Wang, S.C. Wang and C.P. Chang, Towards a hybrid
load balancing policy in grid computing system, Expert Systems with
Applications, 36 (10) (2009) 12054-12064.

[16] B. Yagoubi and M. Meddeber, Distributed Load Balancing Model for
Grid Computing, ARIMA Journal, 12 (2010) 43-60.

[17] K.S. Chatrapati,J.U. Rekha, and A.V. Babu, Competitive equilibrium
approach for load balancing a computational grid with communication

delays, J Theoretical and Applied Information Technology, 19 (2)
(2010) 126–133.

[18] R.U. Payli, K. Erciyes, and O. Dagdeviren, Cluster-Based Load
Balancing Algorithms for Grids, Int J Computer Networks &
Communications, 3 (5) (2011) 253-269.

[19] J. Balasangameshwara and N. Raju, A hybrid policy for fault tolerant
Load Balancing in grid computing environments, J Network and
Computer Applications, 35 (1) (2012) 412-422, http://dx.doi.org /
10.1016 / j.jnca.2011.09.005,

[20] A.K. Bardsiri and M.K. Rafsanjani, A New Heuristic Approach Based
on Load Balancing for Grid Scheduling Problem, J Convergence
Information Technology, 7(1) (2012) 329-336.

[21] Y. Hao, G. Liu and N. Wen, An enhanced load balancing mechanism
based on deadline control on GridSim, Future Generation Computer
Systems, 28 (4) (2012) 657-665.

[22] D. Ramesh and A. Krishnan, Hybrid Algorithm for Optimal Load
Sharing in Grid Computing, J Computer Science, 8 (1) (2012) 175-180.

[23] P. Keerthika and N. Kasthuri, An Efficient Grid Scheduling Algorithm
with Fault Tolerance and User Satisfaction, Mathematical Problems in
Engineering, 2013 (Article ID 340294) (2013).

[24] P. Keerthika and N. Kasthuri, A Hybrid Scheduling Algorithm with
Load Balancing for Computational Grid, Int J Advanced Science and
Technology, 58 (2013) 13-28.

[25] P. Keerthika and N. Kasthuri, An Efficient Fault Tolerant Scheduling
Approach for Computational Grid, American J Applied Sciences, 9 (12)
(2013) 2046-2051, Doi:10.3844/ajassp.2012.2046.2051.

[26] P. Suresh,P. Balasubramanie and P. Keerthika, Prioritized User Demand
Approach for Scheduling Meta Tasks on Heterogeneous Grid
Environment, Int J Computer Applications, 23 (1) (2011).

[27] P. Suresh and P. Balasubramanie, User Demand Aware Grid Scheduling
Model with Hierarchical Load Balancing, Mathematical Problems in
Engineering, 2013 (Article ID 439362) (2013).

