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Abstract—A chromium-loaded ash originating from incineration 

of tannery sludge under anoxic conditions was mixed with low grade 
soda-lime glass powder coming from commercial glass bottles. The 
relative weight proportions of ash over glass powder tested were 
30/70, 40/60 and 50/50. The solid mixtures, formed in green state 
compacts, were sintered at the temperature range of 800oC up to 
1200oC. The resulting products were characterized by X-ray 
diffraction (XRD), scanning electron microscopy (SEM), energy 
dispersive X-ray spectrometry (EDXS) and micro-indentation. The 
above methods were employed to characterize the various phases, 
microstructure and hardness of the produced materials. Thermal 
treatment at 800oC and 1000oC produced opaque ceramic products 
composed of a variety of chromium-containing and chromium-free 
crystalline phases. Thermal treatment at 1200oC gave rise to 
composite products, where only chromium-containing crystalline 
phases were detected. Hardness results suggest that specific products 
are serious candidates for structural applications. 
 

Keywords—Chromium-rich tannery residues, glass-ceramic 
materials, mechanical properties, microstructure. 

I. INTRODUCTION 

OLID waste management has been long recognized as one 
of the most important factors for sustainable development. 

Despite the fact that research on landfill design and 
engineering, together with remediation technology, has drawn 
considerable scientific attention, the main point at issue today 
is the development and/or improvement of waste management 
methods for: (a) minimization of disposed residues, (b) 
minimization of processing costs and (c) production of value 
added materials. Social pressure, waste legislation, and poor 
economic context are some of the most important driving 
forces [1].  

One of the most promising methods of waste 
stabilization/solidification (S/S) is vitrification, i.e. the 
transformation of solid waste into an inert material, which 
could be disposed safely or potentially commercialized [2]. 
The drawback for large scale application of vitrification is its 
relatively high implementation cost [3].  

In this work, we have applied a thermal process where 
ceramic and composite glass-ceramic end products can be 
synthesized resembling, in specific cases, those produced by 
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the vitrification method. The process is less energy 
consuming, since it demands lower thermal treatment 
temperatures, while the devitrification step, i.e. the secondary 
thermal treatment step, was avoided. Additionally, cheaper 
raw materials can be utilized.  

Today, almost 90% of global leather production is based on 
chromium salts for the tanning procedure [4]. During the 
tanning process 60% of total chromium reacts with raw hides 
and animal skin, while the remaining 40% is discharged as a 
liquid by-product. Until recently, 6.5 million tons of wet salted 
hides were processed [5], producing 300-500 million m3 of 
wastewater annually, on global scale [6]. 

A chromium-loaded ash originating from the incineration of 
tannery sludge under anoxic conditions was mixed with low 
grade soda-lime glass powder, in three different proportions, 
and thermally treated at three different temperatures. In order 
to evaluate the above process relative to vitrification, the final 
products were compared to those obtained by the vitrification 
method applied to the same solid waste [7]. 

II. EXPERIMENTAL DETAILS 

The solid waste was recovered from the industrial zone of 
Thessaloniki in northern Greece in the form of dried sludge. 
The sludge was incinerated at anoxic conditions, in order to 
remove organic carbon, while avoiding oxidation of chromium 
from the trivalent to the hexavalent form. The by-product of 
incineration was the chromium-loaded ash (Cr-ash). Details on 
the pretreatment step and chromium-loaded ash can be found 
elsewhere [8].  

This Cr-ash was mixed with low grade soda-lime glass 
powder produced from crushed and subsequently pulverized 
commercial glass bottles. Solid mixtures were pressurized in 
the form of cylindrical green-state compacts in a uniaxial 
press. The relative weight proportions of Cr-ash over glass 
powder tested were 30/70, 40/60 and 50/50. The compacts 
were thermally treated in an electric furnace (Nabertherm 
LHT 04/18) with a heat treatment scenario composed of two 
isothermal steps, each of 30 min duration: the first at 550C 
and the second at maximum temperature. Maximum 
temperatures were 800C, 1000C and 1200C. Each 
isothermal step was preceded by a temperature increase ramp, 
of 30 min. As a result, thermal treatment lasted a total of 2 h.. 
The first isothermal step was imposed in order to remove the 
remaining organic carbon load [8], and the second for the 

Production of Composite Materials by Mixing 
Chromium-Rich Ash and Soda-Lime Glass 

Powder: Mechanical Properties and Microstructure 
Savvas Varitis, Panagiotis Kavouras, George Vourlias, Eleni Pavlidou, Theodoros Karakostas, 

Philomela Komninou 

S



International Journal of Earth, Energy and Environmental Sciences

ISSN: 2517-942X

Vol:9, No:6, 2015

612

 

 

occurrence of sintering. Fig. 1 depicts a schematic diagram of 
the thermal treatment process. 

 

 

Fig. 1 A Schematic Diagram of Thermal Treatment Steps 
 

 

Fig. 2 A General View of All Sintered Products 
 
All sintered products were structurally characterized by X-

Ray diffraction (XRD) with a Rigaku powder diffractometer, 
using CuKa1 radiation. Morphological characterization was 
made by Scanning Electron Microscopy (SEM) with a JEOL 
JSM-840A electron microscope. Elemental analysis for all 
products was made by Energy Dispersive X-ray Spectrometry 
(EDXS) with an OXFORD ISIS-300 EDS analyzer, attached 
on the SEM instrument.  

Hardness was evaluated by the static micro-indentation 
technique using a Knoop diamond indenter tip. An Anton Paar 
MHT-10 indentation tester was used attached on a Zeiss 
Axiolab-A metallographic microscope. Indentations were 
performed under 1 N, with 10 s dwell time and 0.2 N/s loading 
rate. Indentation conditions applied were selected, in order to 
comply with the following prerequisites: (a) to foster plastic 
deformation, (b) to create indentation prints with the property 
of geometric similarity and (c) not produce crack nucleation 
and propagation. Hardness numbers given in the results part 
are the mean value of ten indentations.  

EDXS analyses and indentation experiments were 
conducted on mechanically polished surfaces. Polishing was 

made by wet grinding utilizing SiC papers. The final finishing 
was achieved with 5.0 μm and 0.3 μm Al2O3 pastes. 
Morphological observations by SEM were conducted on 
fractured surfaces from the interior of all products. 

III. RESULTS 

Table I lists composition, thermal treatment conditions and 
respective code names of the resulting products. Thermal 
treatment resulted to structurally solid materials, i.e. sintering 
ensued. The form of all products after sintering is illustrated in 
Fig. 2. 

Structural characterization by XRD showed that sintered 
products containing 30 wt.% (Fig. 3) and 40 wt.% (Fig. 4) Cr-
ash were composed of several different crystalline phases. A 
common characteristic was the chromium-containing 
crystalline phases, namely NaCrSi2O6 (Kosmochlor) and 
(Ca0.55Na0.45)·(Mg0.55Cr0.45)·Si2O6 (Diopsite-Chromian Sodian) 
for sintering temperatures of 800C and 1000C. Table II lists 
all crystalline phases detected by X-ray diffraction analysis. 
Chromium-containing phases have been marked with bold 
letters. 

Sintering at 1200C led to the production of composite 
products, where only Cr2O3 (Eskolaite) crystalline phase was 
detected. This phase was embedded into an amorphous silicate 
matrix. This was supported from the fact that at 1200C, 
diffraction peaks corresponding to Eskolaite are superimposed 
onto a characteristic hump, indicative of an X-ray amorphous 
material (Figs. 3 and 4). Additionally, EDXS elemental 
analyses showed Si, Ca and Na as the main elements inside 
the amorphous matrix. Table III lists the complete elemental 
compositions of the amorphous matrices of 30-12 and 40-12 
products. Each number presented there is the mean value of 
several EDXS point analyses.  

The products containing 50 wt.% Cr-ash presented more 
complicated diffraction patterns, with the following main 
differences, relative to the other two sets of products described 
above: (a) additional chromium-containing phases were 
Ca3Cr2(SiO4)3 (Uvarovite) and MgCr2O4, (b) sintering at 
1200C did not produce an amorphous matrix. The main 
similarity with products that contained 30 and 40 wt.% Cr-ash 
was that Eskolaite was detected after sintering at 1200C. 

SEM observations revealed the morphology of the sintered 
products, with respect to both Cr-ash content and temperature. 
Fig. 6 depicts nine SEM micrographs, from all sintered 
products, where the development of their morphology can be 
followed. Arrows indicate the increase in sintering 
temperature for mixtures of the same relative weight ratio of 
Cr-ash over glass powder. 

 
TABLE I 

CODE NAMES OF SINTERED PRODUCTS WITH RESPECT TO THEIR 

COMPOSITION AND SINTERING TEMPERATURE 

Cr-ash/glass powder 
(mass ratio) 

Sintering temperature (C) 

800 1000 1200 
30/70 30-08 30-10 30-12 

40/60 40-08 40-10 40-12 

50/50 50-08 50-10 50-12 

t (min)

T (C)

550

800

1000

1200

ramp 1

ramp 2

isoth. 1

isoth. 2

30 60 90 120
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Fig. 3 XRD Diagrams of the Products Containing 30 wt.% Cr-ash 
 

 

Fig. 4 XRD Diagrams of the Products Containing 40 wt.% Cr-ash. 
Peak Labels are the same as in Fig. 3 

 

 

Fig. 5 XRD diagrams of the products containing 50 wt.% Cr-ash. 
Peak labels are the same as in Fig. 3, with the following additions: U: 

Ca3Cr2(SiO4)6, M: MgCr2O4 
 

From Fig. 6 it can be seen that at 800C fractured surfaces 
had a granular morphology. Sintering has started 
homogenizing the solid mixtures, since chromium-loaded ash 
particles cannot be distinguished from glass powder particles. 

Increase of Cr-ash weight content from 30% to 50% led to 
coarsening of the granules. Sintering at 1000C led to 
significant alteration of the morphology of 30-10 product; in 
this case the granules completely disappeared and the product 
had an appearance more similar of a compact ceramic 
material. Additionally, pores of irregular shape were 
developed. Products 40-10 and 50-10 retained the granular 
morphology of the fractured surfaces, with opposite trends: 
40-10 had finer granules, while 50-10 had coarser granules.  

At 1200C products 30-12 and 40-12 had a shiny 
appearance. As it is shown in Fig. 6 the fractured surfaces 
were indicative of a glassy material, in agreement to XRD 
results, where crystalline phases can be distinguished. The 
pores in these two products had a circular shape, possibly due 
to inclusion of air. This is an indication that complete melting 
occurred in these two products at 1200C.  

Product 50-12 had a different morphology; despite the fact 
that it did not retain the granular morphology, its appearance 
was less shiny compared to 30-12 and 40-12 products. As it is 
shown in the respective SEM micrograph, two types of 
crystallites can be seen: (a) smaller needle -like and (b) larger 
of circular shape. Since four types of crystallites were detected 
by XRD (Table II), the background is most possibly composed 
of crystalline material. 

 
TABLE II 

CRYSTALLINE PHASES IN ALL SINTERED PRODUCTS 

Ash 
content 
(wt.%) 

Sintering temperature (C) 

800 1000 1200 

30 
NaCrSi2O4 

Diopsite 
SiO2, CaSiO3 

NaCrSi2O4 
Diopsite 
CaSiO3 

Cr2O3 

40 
NaCrSi2O4 

Diopsite 
SiO2, CaSiO3 

NaCrSi2O4 
Diopsite 

CaSiO3 
Cr2O3 

50 

Ca3Cr2(SiO4)3 

NaCrSi2O6 
Diopsite 

SiO2, CaSiO3 

Ca3Cr2(SiO4)3 
NaCrSi2O6 

Diopsite 
MgCr2O4 

CaSiO3 

Cr2O3 
Ca3Cr2(SiO4)3

MgCr2O4 
CaSiO3 

The chemical formula of Diopsite is (Ca0.55Na0.45)·(Mg0.55Cr0.45)·Si2O6. 
 

TABLE III 
EDXS ANALYSES FROM THE AMORPHOUS MATRICES OF 30-12 AND 40-12 

PRODUCTS IN AT.% 

Product 
Elements 

Si Ca Na Mg Al Cr 

30-12 61.2 14.4 14.9  6.0  2.2 1.1 

40-12 56.3 17.3 16.0  6.6  2.3 1.2 

 

Micro-indentation results are presented in Fig. 7. For 
sintering at 800°C and 1000°C, only the product with the 
lowest Cr-ash content could be indented. Measurable 
indentation marks could not be created in the 40-08, 40-10, 
50-08 and 50-10 products. More specifically, indentations 
removed material, producing a shallow hole of irregular shape 
with debris around it. The reason was that these products did 
not acquire the necessary structural integrity, i.e. the ash and 
glass particles did not have strong physical cohesion. 
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[7]. Sintering temperatures for glass-ceramic production could 
be potentially further reduced by increasing glass powder 
content or using glass powder of different composition. Also, 
no less significant is the fact that the devitrification step 
demanded for the production of glass-ceramic products was 
avoided with the sintering process. As a result, processing 
costs can be further reduced. Fig. 8 depicts a schematic 
diagram, where a comparison between conventional 
vitrification of Cr-ash and sintering process applied in this 
work is made.  

 

 

Fig. 8 Comparison of the sintering process applied in this work with 
the vitrification method process 

 
This work is part of an ongoing research by the authors, in 

the field of chromium stabilization via the sintering and 
vitrification methods. Some points of near future research are: 
(a) further tuning of the sintering conditions and (b) study of 
the use of other forms of solid wastes for replacement of 
vitrifying agents (synergistic approach). The stabilization of 
chromium will be also studied by leaching tests and compared 
with the performance of the vitrification method.  

V. CONCLUSION 

Mixing of Cr-ash with soda-lime glass powder followed by 
thermal treatment led to the production of: (a) opaque ceramic 
products composed of chromium-rich and chromium-free 
crystalline phases at 800oC and 1000oC, and (b) glass-
ceramics, i.e. composite products composed of chromium-
containing crystalline phases dispersed into a silicate glass 
matrix at 1200oC. Specific products were found to have 
hardness numbers between 5.0 GPa to 5.6 GPa and as a result 
they can be potentially utilized in structural applications. The 
specific approach, i.e. utilizing glass powder instead of 
applying the conventional vitrification method poses a number 
of significant advantages, like lower thermal treatment 
temperatures, avoidance of the devitrification step and use of 
lower cost raw materials. 
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