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Data-driven Multiscale Tsallis Complexity:
Application to EEG Analysis

Young-Seok Choi

Abstract—This work proposes a data-driven multiscale based
quantitative measures to reveal the underlying complexity of
electroencephalogram (EEG), applying to a rodent model of
hypoxic-ischemic brain injury and recovery. Motivated by that real
EEG recording is nonlinear and non-stationary over different
frequencies or scales, there is a need of more suitable approach over
the conventional single scale based tools for analyzing the EEG data.
Here, we present a new framework of complexity measures
considering changing dynamics over multiple oscillatory scales. The
proposed multiscale complexity is obtained by calculating entropies of
the probability distributions of the intrinsic mode functions extracted
by the empirical mode decomposition (EMD) of EEG. To quantify
EEG recording of a rat model of hypoxic-ischemic brain injury
following cardiac arrest, the multiscale version of Tsallis entropy is
examined. To validate the proposed complexity measure, actual EEG
recordings from rats (n=9) experiencing 7 min cardiac arrest followed
by resuscitation were analyzed. Experimental results demonstrate that
the use of the multiscale Tsallis entropy leads to better discrimination
of the injury levels and improved correlations with the neurological
deficit evaluation after 72 hours after cardiac arrest, thus suggesting an
effective metric as a prognostic tool.

Keywords—Electroencephalogram (EEG), multiscale complexity,
empirical mode decomposition, Tsallis entropy.

[. INTRODUCTION

LECTROENCEPHALOGRAM (EEG) has been exploited

in connection with functional brain mechanisms as a
potential tool for the identification of brain disorder such as
hypox-ic-ischemic brain injury, epileptic seizure and so on [1].
Despite the effectiveness of EEG as a clinical diagnostic tool,
most interpretations are based on subjective measures such as
visual inspection, limiting precise interpretation. Thus, the need
for objective measures gives rise to the development of
quantitative EEG measure to uncover neurological states [2].
Recently, quantitative EEG analyses based on novel signal
processing techniques have shown promising results for
analyzing brain rhythm following hypoxic-ischemic brain
injury after cardiac arrest [3], [4].

Among those, information theoretic analyses have been
successfully used to quantify complexity or irregularity of
injured brain rhythm [5]. These studies founded on assumption
that the larger information content of EEG, the better
neurological status of brain. More recently, it has been reported
that informative content in EEG spans and varies over multiple
frequencies through injury and recovery phases. Thus the single
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scale based entropy measures are lacking in reflecting the
changing dynamics over multiple scales in EEG.

To address this obstacle, we present a multiscale framework
of entropy measure by incorporating intrinsic mode functions
(IMFs) from the empirical mode decomposition (EMD) into
computing entropies. EMD, which has been recently
introduced as a data-driven technique, is known as appropriate
for analyzing non-stationary and nonlinear time-series [6]. It
decomposes a time-series into narrow band components, called
IMFs, by empirically identifying the physical time scales
intrinsic to the signal. Thus, due to the potential of EMD, it has
been gradually used to analyze physiological signals such as
EEG [7]. Unlike the single scale based entropy measures, we
compute entropy using the probability distributions of the IMFs
at each scale, followed by averaging over multiple scales. Thus,
we develop the multiscale complexity measures which are
applied to well-known Tsallis entropy due to their simplicity
and effectiveness. We showed the performance of the
multiscale Tsallis entropy by comparing the conventional
single scale based one in characterizing bursts. In addition, we
demonstrate that the performance of the multiscale Tsallis
entropy by correlating the measure of the neurological
outcomes for the experimental animal subjects.

II. DATA-DRIVEN MULTISCALE COMPLEXITY

A. Empirical Mode Decomposition

In [6], a data-driven decomposition method which is
appropriate for nonlinear and non-stationary time series has
been developed. By an iterative scheme, EMD extracts the
finest oscillation from the series, called as an IMF. The
extracted IMFs exhibit the oscillatory patterns with different
frequency.

An IMF has to meet the following two criteria: 1) the number
of extreme and zero crossings are either equal or differ by at
most one, and 2) the mean value of the envelope defined by the
local maxima and local minima is zero.

Here, we describe the principle of EMD as follows. Let s(i)
denote the raw sampled EEG signal. Then EMD is composed of
the followings:

1. Identify all the local maxima and minima of s(i).

2. Interpolate between local maxima and minima
respectively, getting an upper envelope €, (i) and a lower
envelope ¢ (i)-

3. Compute the mean between e (i) and g() , ie,
u(i)=[e,()+e {H]/2.

4. Subtract the mean from the original signal d (i) = s(i) — u(i) .
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5. Repeat steps 1-4 until d(i) satisfies the above two criteria
to be an IMF. If d(i) satisfies conditions, it becomes the

first IMF that contains the finest temporal scale in the
signal. Also denote as d, (i).

Compute the residue r, (i) =s(i)-d, (i) .
Iterate through steps 1—6 with r(i) instead of s(i) until the

residue satisfies some stopping criterion. A commonly
used stopping criterion is the sum of difference.
After the whole process, the EEG signal s(i) is represented

as
s(i):idk(iﬂ r (i) ()

where K is the number of all extracted IMFs, d, (i) is the K-th
IMF, and r, (i) is the final residue. The last residue can be
considered as the last IMF.
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Fig. 1 Raw EEG recording of a rat during brain injury and recovery
after asphyxia cardiac arrest. A 4 hour compressed signal capturing the
entire experiment is presented. (I) 10 min baseline, (II) 7 min brain
injury after cardiac arrest and silent period, and (III) EEG recovery

B. Multiscale Complexity

Here, we utilize the distribution of the time-varying
individual oscillatory components obtained in (1), i.e., d, (i), in
evaluating the multiscale complexities. To cope with the
temporal evolution of complexities, EEG recording is divided
into a number of segments using a sliding temporal window,
leading to a time dependent entropy measure [3]. For a given
{s(i):i=1..,N} , a sliding temporal window w<N and a
sliding interval A<w are defined. Then, the n-th sliding
window of the raw EEG signal are defined by

s, () ={s(i);i =1+ nA,..,w+nA} 2)

where n=0,1,---,[(N-w+1}/A] and [Xx] denotes the integer

part of X.

Then, we incorporate EMD to utilize the underlying
time-varying oscillatory components in EEG recording. Let
assume EEG is decomposed by a sifting process, yielding
totally IMFs and one residual which is considered as (K+1)-th
mode. A set of IMFs, De[s,(i)], is obtained from the EEG

signal in a sliding window

Defs, ()] =[d,.d;.....d}"'] 3)

where df =[d, (i):i=1+nA,...,w+nA], k—1,...,K+1 are the
k-th IMF after EMD on then n-th sliding window.

In order to compute the probability distributions of the IMF's,
di is partitioned into M disjoint intervals {I ,m=1,..,M}
spanning the range between the minimum and maximum IMF
with | =min{d*} and |, =max{df} where | <I,<---<l,

me

M
Using the above definitions, a set of disjoint intervals
{Im =[l,.1,.,Im=1...,M —1} is obtained by binning d¥. Next,
p¥(m) is the probability that the IMF belongs to the interval 1,
in k-th IMF d¥. It is computed as a ratio of number of samples
of d¥ within I

To evaluate multiscale based complexity, we incorporate the

probabilities of each IMF into well-known Tsallis entropy
measure as

and the total sample number of d¥.

Tsa*(n) = _1(1 an(n)”j 4)

m=1

where k=1,..,K+1,0< p(m)<1 and ip:(m) . The
m=1
following averaged complexities over all scales lead to the

multiscale complexity measure, which is given by

K+1
Multiscale Tsa(n)=)_ Tsa*(n)- )

k=1

III. EXPERIMENTS

EEG signals were recorded from rats during experiments in
rodents subjected to controlled periods of normal circulation
and asphyxial cardiac arrest with the goal of assessing brain
dynamics following such an injury. The experimental model of
brain injury by cardiac arrest has been approved by animal Care
and Use Committee of the Johns Hopkins Medical Institutions
[9]. This rat model has been previously validated to study
multiple aspects of calibrated brain injury after asphyxial
cardiac arrest, including the physiologic parameters, short-term
and long term neurobehavioral outcomes, EEG recovery, and
histology.

Nine adult male Wistar rats (300 + 25g) were used.
Anesthesia was induced with 4% halothane in 50% N2:50%
02. A 10 min of baseline trend was recorded including 5 min
washout period to ensure that halothane did not influence the
EEG. Subsequently, 7 min asphyxia was induced by stopping
and disconnecting the ventilator and clamping the tracheal tube.
The duration of cardiac arrest was determined by the mean
arterial blood pressure being below 10 mmHg. Cardio
Pulmonary Resuscitation was carried out by chest compression
until return of spontaneous circulation which was decided a
spontaneous the mean arterial blood pressure greater than 60
mmHg. Selected rats received hypothermia therapy.
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Fig. 2 Real EEG recording of burst suppressions and time evolutions
of Tsallis entropy and multiscale Tsallis entropy. (a) Real EEG
recording of early recovery phase at 50 min. (b) Time evolution of
Tsallis entropy. (c) Time evolution of multiscale Tsallis entropy

The signals were digitalized using CODAS, a data
acquisition package (DATAQ Instruments INC., Akron, OH).
A sampling rate of 250 Hz and a 12 bit resolution of A/D
converter were used for digitization of the data. All rats were
resuscitated and neurological outcome was evaluated by
neurological deficit score (ranging from 0 = worst to 80 = best)
consisting of level of arousal, cranial nerves and sensory motor
assessments, reflexes, and occurrence of clinically appreciable
seizures [8]. The neurological deficit score was calculated by
an independent observer 72 h after asphyxial cardiac arrest
injury. Fig. 1 shows the EEG recording for a rat during brain
injury and recovery after cardiac arrest. The raw EEG signal
can be divided into three periods as follows: (I) 10-min
baseline, (II) 7-min CA and silent phase, and (III) recovery.
From Fig. 1, it is obvious that the amplitude of EEG decreases
after CA injury and followed by gradual increase in recovery
period. However, it is difficult to clearly discriminate
difference between the pre-injury and the various recovery
phases by visualization alone. Even more difficult would be to
objectively compare different injury grades or the effects of
hypothermia therapy. Limits of visual investigation stress the
need for a reliable quantitative approach to study EEG’s.
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Fig. 3 Correlation between multiscale Tsallis entropy and NDS.
Pearson correlation coefficients and the corresponding p-value were
calculated

To show the inherent oscillatory components of EEG, EMD
was carried out, and the resulting IMFs and corresponding
power spectral densities are shown in Fig. 3. Figs. 2 (a)-(c)
show the EMD results of three 10 s segments of EEG recording
at various phases in Fig. 1 as follows: EEG recordings in
baseline, 50 min, and 180 min, respectively.

For evaluating the multiscale complexities, the following
parameters were used: sliding temporal window length with 10
s, sliding interval with 10 s, and M=20. In addition, when
computing Tsallis entropy, we choose =3 . To test the

capability of the multiscale Tsallis entropy for detecting burst,
we calculated the Tsallis entropies (multiscale and gross scale)
for the burst pattern of EEG shown in Fig. 2 (a). This burst was
obtained from real EEG recording of a rat. Tsallis entropy in
Fig. 2 (b) underestimates some bursts (at 2, 9, and 14 s),
whereas the multiscale Tsallis entropy (Fig. 2 (c)) shows its
specificity for detecting the bursts. Recently, Tsallis entropy
based measure, namely, Tsallis entropy area, has been
introduced as a promising marker for quantifying burst
suppression of EEG [4]. Along this line, we calculated the
Tsallis entropy areas (multiscale and gross scale). Fig. 3 reveals
that the multiscale Tsallis entropy area is relevant with
neurological deficit score. Hypothesis testing using a Student-t
distribution (n=9) reveal that the multiscale entropies is
correlated to neurological deficit score.

IV. CONCLUSION

We presented a new framework for quantifying complexity
in EEG over multiple time scales. Conventional Tsallis entropy
measure has been successfully applied in prognosticating the
degree of neurological states. However, it has limitation in
de-scribing complexity spanned over different scales. Here,
evaluation of Tsallis entropy using probability distribution of
intrinsic oscillatory mode at each scale, followed by averaging
over multiple scales results in an effective measure for assess
multiscale complexity in EEG. Through experimental study,
the multiscale Tsallis entropy is more proficient for detecting
spikes and bursts in EEG than the single scale based one. To
conclude, in order to provide a more effective prognostic metric
for hypoxic-ischemic brain injury following cardiac arrest, the
multiscale complexity framework can be used as a real-time
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indicator of neurological status.

[6]
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