
International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

693


Abstract—All the software engineering researches and best

industry practices aim at providing software products with high
degree of quality and functionality at low cost and less time. These
requirements are addressed by the Component Based Software
Engineering (CBSE) as well. CBSE, which deals with the software
construction by components’ assembly, is a revolutionary extension
of Software Engineering. CBSE must define and describe processes
to assure timely completion of high quality software systems that are
composed of a variety of pre built software components. Though
these features provide distinct and visible benefits in software design
and programming, they also raise some challenging problems. The
aim of this work is to summarize the pertinent issues and
considerations in CBSE to make an understanding in forms of
concepts and observations that may lead to development of newer
ways of dealing with the problems and challenges in CBSE.

Keywords—Software Component, Component Based Software
Engineering, Software Process, Testing, Maintenance.

I. INTRODUCTION

HE basic idea of CBSE lies in processes, methods,
frameworks and tools that support the way of software

development by using components. A conventional Software
Engineering process deals with ‘Creation of a new system’
where as a CBSE process deals with ‘Composition from
existing components’. This basic change in nature of
development indicates that the conventional software
processes, architectures, frameworks etc need to be redefined
in order to make them applicable to CBSE. The goals of
CBSE are: to provide an environment for development of
software systems by assembly of components, and to provide
an environment for development of reusable components and
facilitating the maintenance, management and up-gradation of
systems by customizing and replacing the components. The
benefits of CBSE include reduced time-to-market and cost,
better quality, better complexity management and easy
maintenance.

Though these features provide distinct and visible benefits
in software design and programming, they also raise some
challenging problems. The challenges are: lack of precise
component specification, component models, Component
oriented software life cycle, composition predictability,
dependency analysis, CBSE specific metrics, certification and
tool support etc. It is required that CBSE should keep striving
for providing ways to improve quality and productivity by
making use of experiences that the industry undergoes from

Anil Kumar Tripathi is serving as professor in Department of Computer

Science and Engineering at Indian Institute of Technology (BHU)-Varanasi,
India (e-mail: aktripathi.cse@iitbhu.ac.in).

Ratneshwer is serving as an Assistant Professor in Department of
Computer Science (MMV) at Banaras Hindu University, India (e-mail:
ratnesh@bhu.ac.in).

time to time. The role of an academic research is that of
analysis for the purpose of theorization of the understandings
in forms of concepts and observations that may lead to
development of newer ways of dealing with the problems and
challenges in CBSE.

Researchers and practitioners have been considering various
aspects of CBSE and related issues. It is required to consider
these efforts for the purpose of identification of issues,
challenges and problems in the field so as to be able to
ascertain some important considerations that need urgent, and
possibly immediate attention. This paper attempts to present,
in a concise manner, the research efforts related to the topic of
discussion. A careful reading of literature helps in identifying
research efforts that have gone into classification of concepts
and understandings regarding CBSE.

The rest of the paper is organized as follows. In Section II,
component based software engineering and difference
between objects and components are briefly mentioned. In
Section III, some specific issues of CBSE are summarized. In
Section IV, some current challenges of CBSE are mentioned.
In Section V, a comparison of CBSE and Service oriented
system is given. In Section VI, limitations of CBSE as
perceived by practitioner and in newer context are given.
Finally we conclude the paper in Section VII.

II. COMPONENT BASED SOFTWARE

In a general term, a component is considered as a part of a
system that performs certain functionality for that system. In
the similar analogy, a software component can be defined as
an independent executable unit that performs certain
functionality when get plugged into an application software
system.

One of the earliest definitions of software component is
given by [1]: “A reusable software component is a logically
cohesive, loosely coupled module that denotes a single
abstraction”. Later, Szyperski presented his well-known
definition of a software component at the 1996 European
Conference on Object Oriented Programming [2]: “A software
component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A
software component can be deployed independently and is
subject to composition by third party.” This definition is well
accepted in the CBSE community because it highlights the
major properties of software components that are not
addressed in traditional software modules, such as context
independence, composition, deployment and contracted
interfaces [3]. In 2000, a broader, more general notion of
software components was given by [4]: ‘An independently
deliverable piece of functionality providing access to its
services through interfaces’. Another definition of a software

Anil Kumar Tripathi, Ratneshwer

Some Pertinent Issues and Considerations on CBSE

T

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

694

component is given in UML [5]: “A component represents a
modular, deployable and replaceable part of a system that
encapsulates implementation and exposes a set of interfaces”.
Recently, Councill and Heineman gave a definition to
emphasize the importance of a consistent component model
and its composition standard in building components and CBS
[6]: “A software component is a software element that
conforms to a component model and can be independently
deployed and composed without modification according to a
component standard.”

A. Difference between Components and Objects [7]-[9]

A common view is that a component is closely related to an
object and that Component Based Development is therefore an
extension of Object-Oriented Development. However many
factors, such as granularity, concepts of composition and
deployment, and even the development processes, clearly
distinguish components from objects.

Object Oriented Programming focuses on the relationships
between classes that are combined into one large binary
executable, while Component Oriented Programming focuses
on interchangeable code modules that work independently and
do not require being familiar with their inner workings to use
them. The fundamental difference between the two
methodologies is the way in which they view the final
application. In the traditional object oriented world, even
though one may factor the business logic into many fine-
grained classes, once those classes are compiled, the result is
monolithic binary code. All the classes share the same
physical deployment unit (typically an EXE), process, address
space, security privileges, and so on. If multiple developers
work on the same code base, they have to share source files. In
such an application, a change made to one class can trigger a
massive re-linking of the entire application and necessitate
retesting and redeployment of all the other classes. On the
other hand, a component –oriented application comprises a
collection of interacting binary application modules- that is, its
components and the calls that bind them. It you need to
modify a component implementation, changes are contained in
that component only. Components can even be updated while
a client application is running, as long as the components are
not currently being used. Improvements, enhancements and
fixes made to a component may immediately be available to
all applications that use that component, whether on the same
machine or across a network. Unlike classes, the
implementation of a component is generally completely
hidden and sometimes only available in binary form.
Internally, a component may be implemented by a single class,
by multiple classes, or even by traditional procedures in a non-
object oriented programming languages. Unlike classes,
component names may not be used as type names. Instead, the
concept of type (interface) and the concept of implementation
are completely separated. Finally, the most important
distinction is that software components conform to the
standards defined by a component model.

III. SPECIFIC ISSUES IN CBSE

Software engineering, over the last few decades, has been
promoting the development of software systems with reusable
software pieces. Teaching the principle of separation of
concerns, [10] has shown that pieces of a program could be
developed independently. In 1968, [11] proposed that
components could be largely applied to different machines &
different users and should be available in families arranged
according to precision, robustness, generality and
performance. According to him, components could be used to
maintain the software industry mass production. Parnas has
introduced the concept of information hiding [12] for
decomposing a system into parts that hide implementation
details behind interfaces. In such a system, any module can be
replaced by a different one satisfying the same interface. This
paradigm has now been anointed with the name Component
Based Software Development (CBSD). CBSD is changing the
way large software systems are developed. CBSD embodies
the buy; do not build philosophy espoused by [13].

Considerable efforts have been spent, both by academia and
industry, to advance the state-of-the-art of component
technology. Some of these efforts are summarized below.

A. Software Processes for CBSE

A CBS system is different from a conventional software
system in multiple ways. The traditional discipline of Software
Engineering needs newer methodologies to support
Component Based Development. Pree [14] has suggested a
way to manage complexity and rapid change adaption through
reuse of already developed components. This implies that the
development process must change focus – from programming-
intensive activities to reuse, integration, standards,
management of complex and flexible structures, finding
proper solutions, tradeoff analysis and marketing survey.
These require changes in development procedures, tools, but
also developers’ skills and organizational changes. Brown &
Wallnau [15] have presented a reference model for the
assembly of component-based systems that can be used as the
basis for defining Q systematic approach to the development
of such systems. Morisio, Seaman, Parra and Basili [16] have
summarized the results of a study on fifteen projects that used
a COTS-based approach. The process they followed is
evaluated to identify essential differences in comparison to
traditional software development. The main differences, and
the activities for which projects require more guidance, are
requirements definition and COTS selection, high level
design, integration and testing. In [17], a comparison of CBSE
processes and Conventional software processes has been
demonstrated.

B. Development of Components from Legacy Systems

Many legacy systems have suffered from lack of
standardization and openness, difficulty of change, and
absence of distributed architecture. Especially, according as
legacy system has been deteriorating from an architectural
point of view over the years, we must continually maintain
these legacy systems at high cost for applying new

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

695

technologies and extending their business requirements. For
the purposes of transforming a legacy system into component
system, we need systematic methodologies and concrete
guidelines [18]. Some significant works have been observed
related to component oriented re-engineering that include
extraction of software components from a legacy software
system, component based forward engineering etc. Keller and
others [19] have given an overview of an environment for
pattern based reverse engineering of design components.
Skarmstad and others [20] have formulated a framework
within which extracted computing units could be gradually
migrated as independent COTS. Favre and others [21] have
pointed out some issues in reengineering the architecture of
evolving CBS. They have shown the use of a Meta model in
understanding and reasoning about components, and how this
Meta model constitutes a good basis for building a reverse
engineering environment. Lundberg, Jonas & Lowe [22] have
given a presentation of dominance analysis, and how it can be
used to identify software components in object oriented legacy
systems. Kontogiannis and Zou [23] have proposed a
framework that allows for the identification of reusable
business logic entities in large legacy systems in the form of
major legacy components, the migration of these procedural
components to an object oriented design, the specification of
interfaces of these identified components, the automatic
generation of CORBA wrappers to enable remote access, and
finally, the seamless interoperation with Web services via
HTTP based on the SOAP messaging mechanism. In [24] an
approach has been described for identifying reusable
components from legacy systems.

C. Representation of Component Based Software

We have a general idea of what a component is, but
because, in the software context, what we know as
components have so many varied forms, functions and
characteristics, (as source code modules, parts of an
architecture, parts of a design, binary deployable executables,
etc.), there is a correspondingly large number of definitions of
a component [25]. Ning [26] has proposed a process model
and supporting technologies to describe explicit representation
of software components and component based architectures.
Collins-Cope and Matthews [27] have proposed a reference
architecture for component based systems consisting of five
layers. The purpose is to show how this model helps us to
understand the overall structure of a system, how layering
helps to clarify our thoughts, and how it encourages the
separation of concerns such as the technical vs. the problem
domain, policy vs. mechanism, and the buy-or-build decision.
Bosch and Stafford [28] have introduced the notion of
software architecture as a key success factor for component
based software development. Some architectural styles found
in the CBSE literature are: pipe and filter architecture,
blackboard architecture, object-oriented architecture, shared
repository, layered abstract machine, domain specific
architecture etc. Conradi and others [29] have modeled the
COTS-based software process using a software process
modeling language (E3) and discussed some of their

limitations, and given suggestions for improvement of these.
Smeda and others [30] have presented a short summery of an
approach to model a component-based system, in which
connectors are defined explicitly and raised to the level of
components. Hatebur and others [31] have proposed a method
for Component-based software and system development,
where the interoperability between the different components is
given special consideration.

D. Composability in Component Based Software

While Composability is a much desired quality for software
artifacts, there is no consensus whatsoever on what
Composability really is, or how it can be achieved [32]. Seco
[33] has discussed the design and implementation of a
composition language for the .NET platform. The language is
based on a simple core language that includes specific
abstractions for composition. Sitaraman [34] has discussed a
variety of issues in compositional performance specification
and reasoning, including the impact of abstraction, precision,
and parameterization. Wuyts and Ducasse [35] have claimed
that one of the important problems that should be addressed by
component languages is the composition of components.
CBSE is also important for another basic reason. It enables
compositional or modular reasoning, and therefore, it
facilitates production of high quality systems. The defining
characteristic of composability is the ability to combine and
recombine components. There are both syntactic and semantic
forms of composability; they deal respectively with technical
aspects of enabling components to work together and with
whether their combined computation is meaningful [36]. A
need arises for specialized environments that explicitly
support the composition of an application out of deployable
components. Such composition environments are starting to
emerge, but an overall understanding of their nature and
functionality is currently lacking [37]. Reussner and others
[38] have demonstrated parametric performance contracts and
their applications and also show that these contracts are
compositional. One needs a better understanding of the
requirements involved in successful composition, and in
addition defines the situations where composition fails. With
this aim, [39] have (a) introduced a general model of
composing systems from multiple concerns, (b) introduced a
number of requirements for design-level Composability and
(c) defined a category of Composability problems that are
inherent for given composition models, which they term as
composition anomalies. To integrate the previously existing
components into a new system, a lot of problems may occur.
These problems frequently occur when composing two or
more components in a CBSD process.

E. Reusability of Software Components

Designing with reuse of existing components has many
advantages. The software development time can be reduced
and reliability of the product can be enhanced. Reuse of
software component is justifiable if the cost of reuse is less
than the cost of developing new components. Hence, one
empirical attribute for reusability is the effect or cost required

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

696

to reuse a certain software component [40]. Caldiera and
Basili [41] propose the three reusability factor: cost of reuse,
usefulness of reusable components and quality of reusable
components. Broadly, there are two types of component based
reuse: with no change to an existing component, and with
change. Kim, in his paper, mentioned the following factors
that make the reusability complex: functional differences,
programming language differences, operating environment
differences, industry standard differences, data format
differences and data structure differences.

IV. CHALLENGES IN COMPONENT BASED SOFTWARE

Software industry is now moving away from giant,
monolithic and difficult-to -maintain code based software
development. Component Based Development has established
itself as the overriding software development methodology.
Some of the research challenges are summarized below.

A. Testing of Component Based Software

CBS systems raise new problems for the testing
community. Although the technology for constructing
component-based software is relatively advanced, there is a
lack of sufficient theoretical basis for testing component-based
software. Rosenblum [42] has initiated the development of
such a theory. The main result is a formal definition of the
concept ‘C-adequate-for-M’ for adequate unit testing of a
component and the concept ‘C-adequate on-M’ for adequate
integration testing of a component-based system. Martins and
others [43] have given an approach to improve component
testability by integrating testing resources into it, and hence
obtaining a self-testable component. Weide [44] has given an
approach of Modular Regression Testing. Weyuker [45] has
outlined some of the potential problems to be expected when a
project team decides to use a software component originally
written for a different component infrastructure with different
usages patterns. Mariani and Pezze [46] have described a
verification technique to check the completeness and
compatibility of the services provided by the components to
reveal possible conflicts. They have proposed a technique to
automatically identify behavioral differences between
different versions of the system, to deduce possible problems
from inconsistent behaviors. Denaro and others [47] have
proposed to derive application-specific test cases from
architecture designs so that the performance of a distributed
application can be tested based on the middleware software at
early stages of a development process. Behavioral differences
among components may cause subtle failures difficult to
reveal and remove.

B. Maintenance of Component Based Software

Building a commercial system from software components
changes neither the importance of, nor the expense associated
with, maintenance, evolution and management. That we are
using a system built from components rather than source code
does change the nature of the maintenance activities [48].
Clapp and Taub [49] have considered the issues and risks in
using COTS software over the life cycle and how to control

them. They described changes in the software maintenance
process that are needed to manage a COTS-based system.
Voas [50] has given an overview of the maintenance
challenges raised by component based development. He has
presented a consumer-oriented methodology for predicting
what impact on system quality a particular Commercial-Off-
The-Shelf (COTS) software component will have. Vigder and
Dean [51] have described how organizations can use software
architecture, software instrumentation, and component-based
configuration management to support the ongoing system
management activities. Dig & Johnson [52] have explored
what software maintenance technologies will be needed in
order to successfully maintain component based systems.
Vigder and Dean [51] have identified the major activities of a
system maintainer, described the properties that can be
designed into a system to facilitate these activities, and
outlined a checklist of items that can be verified during a
design or code review, or during the evaluation of a COTS
component in order to guarantee these properties are built into
the system.

C. Metrics for Component Based Software

Creating quality products requires insight, control and
management throughout the CBSE life cycle. Metrics provide
that data and, when properly used, greatly enhance the control
over the component development process and quality of CBS.
Verner and Tate proposed a method for estimating early in the
software life-cycle the LOC of a system [53]. Relying on
COTS components increases the systems vulnerability to risks
arising from third-party development, such as vendor
longevity and intellectual-property procurement. One way of
alleviating such concerns is by using software metrics to guide
quality and risk management in a Component-Based System
(CBS), accurately quantifying various factors contributing to
the overall quality, and identifying and eliminating sources of
risk [54]. The limitations of traditional models demonstrate the
need for a new approach to effort estimation in CBSD [55].
This method, described as a component-based method (CBM),
sizes individual components or modules first and then adds the
component sizes to obtain an estimated system size. The
partition in components depends on the environment (type of
software) and, therefore, is not fixed. Poulin [56] has outlined
some of the basic metrics for CBSE projects. He has grouped
them into areas to address issues in project management,
quality, reuse and technology.

D. Component Based Software for Real Time Systems

Villela and others [57] have described a framework for
distributed real-time embedded systems, which has been
developed to help developers in task of modeling and
implementation of embedded real-time applications. Although
attractive, CBD has not been widely adopted in domains of
embedded systems. The main reason is inability of these
technologies to cope with the important concerns of embedded
systems, such as resource constraints, real-time or
dependability requirements [58]. Existing component models
provide no support for real-time services and some real-time

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

697

extensions of component models lack consideration for
reusability of components in providing real-time services.
Wang and others [59] have developed a real-time component-
based system that maintains the reusability of components.
Key challenges in distributed real-time embedded (DRE)
system developments include safe composition of system
components and mapping the functional specifications onto
the target platform. Model-based verification techniques
provide a way for the design-time analysis of DRE systems
enabling rapid evaluation of design alternatives with respect to
given performance measures before committing to a specific
platform [60]. Sinha and Hanumantharyab [61] have
illustrated how the concepts of category theory can be utilized
to develop component-based fault-tolerant software systems
that encompass software components capable of tolerating
particular types of faults. Ducasse and others [62] have
described a data-centric component model for embedded
devices that (i) minimizes the number of concurrent tasks
needed to implement the system, (ii) allows one to verify
whether components meet their deadlines by applying rate
monotonic analysis, and (iii) can generate and verify schedules
using constraint logic programming.

E. Dependency Analysis of Component Based Software

Component-based development has become an important
area in the software engineering field. In [63], a definition of
inter-procedural dependence analysis and its implementation
in a prototype tool that supports software maintenance have
been presented. In spite of this, there has been little effort to
understand and to manage the different forms of dependencies
that can occur in systems built from components [64].
Managing dependencies among components is one of the most
crucial problems one has to solve before a system can be
dynamically reconfigured at runtime [65]. Chen has described
a dependence management for dynamic reconfiguration of
distributed systems. The dependence management analyzes
not only the static dependencies among components, but also
the dynamic dependencies that take place at runtime, in order
to support an efficient consistent reconfiguration of distributed
systems [66]. As the size and complexity of software systems
growing, the identification and proper management of
interconnection dependencies among various pieces of a
system have become responsible for an increasingly important
part of the development effort. Guo made an attempt to
address this problem by using category theory and given a
framework of the dependencies modeling [67]. In using
components, the most difficult issues are ensuring that hidden
dependencies won't cause failures and that non-functional
properties (such as real-time performance) are being met.

V. COMPONENT BASED DEVELOPMENT VS. SERVICE BASED

DEVELOPMENT

Although components and services have common concepts
of reusability in their origin but they have differences at their
architectural, internal description and abstraction levels.
Components are known by their classes and interfaces
whereas services are known by their service contracts. Objects

have tight coupling but components and services have loose
coupling. The major differences are in their connections and
the way they provide services to third party. Service oriented
computing provides a way to create a new architecture that
reflects components trend towards autonomy and
heterogeneity [68]. Software components support black box
and white box encapsulation both but software services
support only black box encapsulation. In CBSE, there is a
limited composition support for components of different
models but software services are implementing in diverse
technologies, on different platforms.

Both, components and services are self content entities
having some specific functionality. Component is meant for
particular language but services facilitate components to go
across language boundary. In CBSE, components are the
building blocks that can be deployed independently and are
subject to composition by third party. In service based
development, software services are building blocks that can be
reused and offer particular functionality. They are generally
implemented as coarse-grained discoverable software entities
[69]. Although both CBSE and service oriented system
engineering are interface based, the separation between
service description and service implementation is more
explicit than the separation between component specification
and component specification and implementation [70].
Services operate in distributed environment and focus on
document centric communication. In contrast, component
based development does not take that much stand on how the
components interact with one-another, this depends on the
technology that the components are based on. For integrating
existing components, SOA has a concept of service
composition which is facilitated by service bus. CBD uses
function calls and application framework such as object
request brokers, message passing middleware and application
servers [71].

VI. LIMITATIONS ON CBSE

In this section, we have mentioned some limitations of the
CBSE observed from literature.

A. As Perceived by Practitioners

In large companies the development can be geographically
distributed throughout many different offices. The larger
distance between the offices, the harder it is to keep closer
contact with other developers. This makes it harder to
coordinate the development. It is especially hard to coordinate
changes in a component’s interface [72]. The one problem is
lack of belief. A software developer uses components that she
has not developed. So, developers sometimes are not feeling
confident during development. This problem becomes more
significant due to lack of proper documentation. The
components are characterizing by their document. If
exceptions, assumptions associated with the components are
not properly documented, then developer could misunderstood
about the uses of components. Different software developers
are different views about documentation. Some of them
require the complete description of interfaces; some of them

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

698

want to know about exceptions etc. So, proper documentation
is required. Components are generally known as reusable
entities as ‘developed once and reuse many times’. In order to
make a component reusable, one has to incorporate all general
requirements require for a specific application. The
component has to be designed so that it can be used in
different application which causes additional cost associated
with the component. During maintenance of system, replacing
component with their newer version may cause some
functional/behavioral mismatches. One limitation is to select
right components for specific application. If a software
company is having internal component repository (component
developed within the company) then searching is easy. But if
one has search component from some external repository then
searching process will be difficult because we have to use
their searching criteria. It may be difficult to measure how
well a component meets a certain criteria and lead to difficulty
in selecting a component. This is especially true if there is no
prior knowledge about the components or prior extensive
experience of creating measurable test cases [73]. Evaluating
non-functional qualities of a component is hard because of
incomplete understanding of them and inadequate tools and
techniques for determining if they meet the expectations.

B. As Perceived in Context of Multi-core Computing

During the last few years there have been a number of
emerging trends in CBSE. One important issue is multicore
computing in CBSE environment. The number of cores on a
device is still fairly modest, and individual software
components are developed for a single computational cluster
by component developer and then assembled into a multicore
system. Development tools for this methodology improve
steadily as virtualization of hardware through middleware is
derived by efforts such as SCA (Software Communication
Architecture). Auto generation of glue code between
components is the norm [74]. The issues of multicore
computing includes interrupt handling, writing code for
especially for multi core processors, time management etc.
The one approach may be to partition the systems into
components and assign components to certain cores to realize
the effect of multicore computing in CBSE environment.

Component-based programs, as a kind of user level
programs, make full use of the multi-core architecture with
user level threading model. OS and compiler make their
changes to support component-based as well as multi-
threaded. This kind of changes may be partial according to
different model and little changes should be made [75]. The
basic multi-core programming assumes each component has a
dedicated scheduler for its tasks and further, a system-level
scheduler is responsible for scheduling the components on the
processor. The available processor capacity is divided between
components using bandwidth server techniques. A separate
server is allocated to each component and each server is seen
by the system-level scheduler as a task with a unique priority.
At the next level the tasks of the component are scheduled by
the dedicated component scheduler according to a component
specific algorithm [76].

The issues of multi-core computing in CBSE are as follows:
 Multi-core specific development debugging tools
 Multi-core component standards
 Process models for multi-core development
 Programming models for multi-core development.

VII. CONCLUSION

CBSE has always been considered as a useful and
promising technology. The work attempted to consider the
methodologies and concepts of conventional software
engineering so as to be able to bring out pertinent observations
regarding these methodologies and concepts in context of
CBSE. Various researches and key practices regarding CBSE
have inferred that the conventional development process must
change focus and have demonstrated that CBSE requires
established methodologies and tool support covering the entire
component and system lifecycle including technological,
organizational, marketing, legal, and other aspects. CBS
systems raise new problems for the testing and maintenance
community. Although the technology for constructing a CBS
is relatively advanced, there is a lack of sufficient theoretical
basis for testing and maintenance of a CBS. CBSE specific
metrics are required to enhance the control over the
component development and management process and quality
improvement.

REFERENCES
[1] G. O. Young, “Synthetic structure of industrial plastics (Book style with

paper title and editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New
York: McGraw-Hill, 1964, pp. 15–64.

[2] Booch, G. (1993). Software Components with Ada: Structures, Tools,
and Subsystems, 3rd Edition. Reading, MA: Addition-Wesley.

[3] Szyperski, C. (1999). Component Software- Beyond Object Oriented
Programming, Reading, MA: Addition-Weslay.

[4] Gao, J., Z., Jacob Tsav, H., S., & Wu, Y. (2003). Testing and Quality
Assurance for Component Based Software, MA: Artech House, INC.

[5] Brown, A. J. (2000). Large-scale Component Based Development.
Englewood Cliffs, NJ: Prientice Hall.

[6] OMG. (2000). OMG Unified Modeling Language Specification, version
1.4, Object Management Group, 2000.

[7] Councill, W. T. &Heineman, G. T. (Eds.). (2001). Component Based
Software Engineering: Putting the Pieces Togather, Reading, MA:
Addison Wesley, 2001.

[8] Lowy, J.(2005). Programming .Net Components. O'Reilly Media, Inc.
Sebastopol,CA.

[9] Crnkovic, I. & Larsson, M. (2002). Building Reliable Component Based
Systems. MA: Artech House Publishers.

[10] Weinreich, R. &Sametinger, J. (2001). Component models and
component services: concepts and principles. In G. T. Heineman and W.
T. Councill, (Eds.), Component-Based Software Engineering: Putting
the Pieces Together. Addison-Wesley Longman Publishing Co., Boston,
MA, 33-48.

[11] Dijkstra, E. (1968),The Structure of the ‘T.H.E.’ Multiprogramming
System. (Electronic Version).Communications of the Association of
Computing Machinery, Vol. 11, No. 5, pp. 453-457.

[12] McIlroy, M. D. (1968). Mass Produced Software Components. In:
NATO Software Engineering Conference Report, Garmisch, Germany,
October, pp. 79-85.

[13] Parnas, D. (1972). On the Criteria for Decomposing Systems into
Modules. (Electronic Version).Communications of the Association of
the Computing Machinery, Vol. 15, No. 12, pp. 1053-1058.

[14] Brooks, F. (1987). No Silver Bullet: Essence and Accidents of Software
Engineering. IEEE Computer, Vol. 20, No. 4, 1987, pp. 10-19.

[15] Pree, W. (1997). Component-Based Software Development- A New
Paradigm in Software Engineering?In Proceedings of the Fourth Asia-

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

699

Pacific Software Engineering and International Computer Science
Conference, APSEC.IEEE Computer Society, Washington, DC.

[16] Brown, A. W. and Wallnan, K. C. (1996). Engineering of Component-
based Systems.In Proceedings of the 2nd IEEE international Conference
on Engineering of Complex Computer Systems (ICECCS '96) (October
21 – 25).ICECCS.IEEE Computer Society, Washington, DC, 414.

[17] Morisio, M., Seaman, C. B., Parra, A. T. &Basili, V. R. (2000). Issues in
COTS-Based Software Development. Presented at COTS Workshop -
Continuing Collaborations for Successful COTS Development,
Limerick, Ireland.

[18] Tripathi, A. K., Ratneshwer& Gupta, M. (2007). Some Observation on
software processes for CBSE. Software Process: Improvement and
Practice. Volume 13, Issue 5, September 2008, pages 411-419.

[19] Kim,H. K., Chung,Y. K. (2006), “Transforming a Legacy System into
Components”, Springer-Verlag Berlin Heidelberg, 2006.

[20] Keller, R. K., Schauer, R., Robitaille, S., &Pagé, P. (1999). Pattern-
based Reverse-Engineering of design components.In Proceedings of the
21st international Conference on Software Engineering (Los Angeles,
California, United States, May 16 – 22).International Conference on
Software Engineering. IEEE Computer Society Press, Los Alamitos,
CA, 226-235.

[21] Skramstad, T., Khan, K., Rashid, M., (1999). Constructing Commercial
Off-the- Shelf from Legacy system: A Conceptual Framework,
Australasia Conference on Information Systems (ACIS), Wellington, 1-3
December 1999, pp. 798-805.

[22] Favre, J. M., Cervantes, H., Sanlaville, R, Duclos, F. &Estublier, J.
(2001). Issues in Reengineering the Architecture of Evolving
Component-Based Software. SWARM forum (Software Architecture
Recovery and Modeling) at the Working Conference on Reverse
Engineering (WCRE'2001) Stuttgart, Germany, October 2001.

[23] Lundberg, Jonas &Löwe, W. (2003). Architecture Recovery By Semi-
Automatic Component Identifcation. In: Software Composition (SC'03)
- a workshop afiliated with the Europian Joint Conference on Theory
and Practice of Software (ETAPS'03), Poland, April 2003.

[24] Kontogiannis, K. &Zou, Y. (2004). Reengineering Legacy Systems
Towards Web Environments. In: K. M. Khan and Y. Zheng (eds.):
Managing Corporate Information Systems Evolution and Maintenance,
Idea Group Publishing, Hershey. pp. 138–146.

[25] CGI. (2004). White Paper on “Component Mining: An approach for
Identifying Reusable Components from Legacy Systems”, By CGI
Groups.
http://whitepapers.techrepublic.com.com/abstract.aspx?docid=122639.
Retrieved August 2007.

[26] Lüders, F., Lau, K. K. and Ho, S. M. (2000), “Specification of Software
Components”, In IvicaCrnkovic and Magnus Larsson (Editors),Building
Reliable Component-Based Software Systems, ISBN 1-58053-327-2,
Artech House Books, 2000.

[27] Ning, J. Q. (1996). A Component-Based Software Development Model.
In Proceedings of the 20th Conference on Computer Software and
Applications (August 19 – 23). COMPSAC.IEEE Computer Society,
Washington, DC, 389.

[28] Collins-Cope, M. & Matthews, H. (2000). A Reference Architecture for
Component Based Development. in Proceedings of the 6th international
Conference on Object Oriented information Systems (December 18 - 20,
2000). Springer-Verlag, London, 225-237.

[29] Bosch, J. & Stafford, J. A. (2002). Architecting Component Based
Systems. In I. Crnkovic.and M. Larsson (Eds.), Building Reliable
Component Based Systems (p. 41-54). MA: Artech House, publishers.

[30] Conradi, R., Jaccheri, L. &Torchiano, M. (2003). Using software
process modeling to analyze the COTS based development process. In
proceedings of Prosim’03 Workshop, May 2-3, Portland State
University, Maryland.

[31] Smeda, A., Oussalah, M. &Khammaci, T. (2004). Improving
Component-Based Software Architecture by Separating Computations
from Interactions.First International Workshop on Coordination and
Adaptation Techniques for Software Entities, WCAT'04, Oslo, Norway.

[32] Hatebur, D., Heisel, M. &Souquieres, J. (2006). A Method for
Component-Based Software and System Development. In Proceedings
of the 32nd EUROMICRO Conference on Software Engineering and
Advanced Applications (August 29 - September 01, 2006).
EUROMICRO. IEEE Computer Society, Washington, DC, pp. 72-80.

[33] Lucas, C &Steyaert, P. &Mens, K. (1996). Research Topics in
Composability.In Proceedings of the CIOO Workshop at ECOOP, Linz,
Austria, July 8-12, 1996.

[34] Seco, J. C., (2000). Type Safe Composition in .NET.In the proceedings
of The First Microsoft Research – Summer Research Workshop,
Cambridge, England.

[35] Sitaraman, M. (2001). Compositional Performance Reasoning. In
proceedings of 4th ICSE Workshop on Component Based Software
Engineering Component certification and system prediction, may 14-15,
Toronto, Canada.

[36] Wuyts, R. &Ducasse, S. (2002). Composition languages for black-box
components. http://www.iam.unibe.ch/scg/Archive/Papers/
Wuyt01c.pdf, February 2002.

[37] Petty, M. D. (2002). Semantic Composability and XMSF”, XMSF
Technical Challenges Workshop 2002, Monterey CA.

[38] Lüer, C. &Hoek, A. V. (2002). Composition Environments for
Deployable Software Components.Technical Report.UCI-ICS-02-18.
Department of Information and Computer Science, University of
California, Irvine, August 2002.

[39] Reussner, R. H., Firus, V. & Becker, S. (2004). Parametric Performance
Contracts for Software Components and their Compositionality.In
Proceedings of the 9th International Workshop on Component-Oriented
Programming (WCOP 04), Oslo, Norway, June 2004.

[40] Bergmans, L., Tekinerdogan, B., Glandrup, M. &Aksit, M. (2000). On
Composing Separated Concerns- Composability and Composition
Anomolies. ACM OOPSLA Workshop on Advanced Separation of
Concerns, Minneapolis, Minnesota, USA, 15-19 Oct, 2000.

[41] Gill N.S. (2003). “Reusability Issues in Component based
Development”, ACM SIGSOFT SEN, Volume 28, Number 4, 2003,
ACM Press, New York, NY, USA, Pages 4-7.

[42] Caldiera,G. and Basili, V. R. (1991). “Identifying and qualifying
reusable software components,” Computer, vol. 24, no. 2, pp. 61-70,
Feb. 1991.

[43] Rosenblum, D. S. (1997). Adequate testing of component-based
software. Technical Report. Department of Computer Science.University
of California, Irvine. Technical Report UCI-ICS97 -34.

[44] Martins, E., Toyota, C. M. &Yanagawa, R. L. (2001). Constructing Self-
Testable Software Components. In Proceedings of the 2001 international
Conference on Dependable Systems and Networks (Formerly: Ftcs)
(July 01 - 04, 2001). DSN. IEEE Computer Society, Washington, DC,
151-160.

[45] Weide, B. (2001). Modular regression testing”: Connections to
component-based software. In proceedings of 4th ICSE Workshop on
Component-based Software Engineering: Component Certification and
System Prediction. May 14-15, Toranto, Canada, p. 47-51.

[46] Weyuker, E. J. (2001). The Trouble with Testing Components.In G. T.
Heineinnan and W. T. Councill. Component Based Software
Engineering- Putting the Pieces Together (pp: 519-522). MA:Addison
Wesley Professional.

[47] Mariani, L. &Pezze, M. (2003). Behavior Capture and Test for
Controlling the Quality of Component-Based Integrated systems. In:
Proceedings of the ESEC/FSE Workshop on Tool integration in system
development, Helsinki.

[48] Denaro, G., Polini, A. &Emmerich, W. (2005). Performance Testing of
Distributed Component Architectures. In: Building Quality into COTS
Components - Testing and Debugging. Springer, pp. 294-314.

[49] Vigder, M. (2001). The Evolution, Maintenance and Management of
Component Based Systems. In G. T. Heineman& W. T.Councill (Eds.),
Component Based Software Engineering: Putting the Pieces Togather
(pp. xvii). Addison-Wesley Longman Publishing Co., Boston, MA.

[50] Clapp, J. A. &Taub, A. E. (1998). A Management Guide to Software
Maintenance in COTS-Based Systems. MITRE Corporation.
http://www.mitre.org/resources/centers/sepo/sustainment/manage_guide
_cots_base.html.

[51] Voas, J. et al. (1996). Gluing Together Software Components: How
Good Is Your Glue? Proc. Pacific Northwest Software Quality Conf.,
Pacific Northwest Software Quality Conf. Inc., Portland, Ore., 1996, pp.
338-349.

[52] Vigder, M. R. & Dean, J. C. (1998(a)). Managing long-lived COTS
based systems. In Software Engineering Standards Workshop,
Monterey, California.

[53] Dig, D. & Johnson, R. (2006). Automated Upgrading of Component-
based Applications. In Companion To the 21st ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages, and
Applications (Portland, Oregon, USA, October 22 - 26, 2006). OOPSLA
'06. ACM, New York, NY, 675-676.

[54] Verner, J. & Tate, G. (1992). A Software Size Model.IEEE Transaction
of Software Engineerung. 18, 4 (Apr. 1992), 265-278.

International Journal of Business, Human and Social Sciences

ISSN: 2517-9411

Vol:9, No:2, 2015

700

[55] Paul, R. A. (1995). Metrics-guided Reuse. In Proceedings of the Seventh
International Conference on Tools with Artificial Intelligence, p.120,
November 05-08.

[56] Smith, R., Parrish, A. & Hale, J. (1998). Cost Estimation for Component
Based Software Development", Proceedings of the 36th Annual ACM
Southeast Conference, April 1-3, Marietta, Georgia.

[57] Poulin, J. S. (2001). Measurement and metrics for software components.
In G. T. Heineman and W. T. Councill (Eds.), Component-Based
Software Engineering: Putting the Pieces Together (p. 432-452).
Addison-Wesley Longman Publishing Co., Boston, MA.

[58] Villela, C., Becker, L. B., and Pereira, C. E. (2001). Framework for
Component-Based Development of Distributed Real-Time Systems.In
Proceedings of the Sixth international Workshop on Object-Oriented
Real-Time Dependable Systems (Words'01) (January 08 - 10,
2001).WORDS.IEEE Computer Society, Washington, DC, 85.

[59] Crnkovic, I. 2005. Component-based Software Engineering for
Embedded Systems.In Proceedings of the 27th international Conference
on Software Engineering (St. Louis, MO, USA, May 15 - 21,
2005).ICSE '05. ACM, New York, NY, 712-713.

[60] Wang, Y., King, G. &Wickburg, H. (1999). A Method for Built-in Tests
in Component-based Software Maintenance.In Proceedings of the Third
European Conference on Software Maintenance and Reengineering
(March 03 – 05).CSMR.IEEE Computer Society, Washington, DC, 186.

[61] Madl, G. &Abdelwahed, S. 2005. Model-based analysis of distributed
real-time embedded system composition.In Proceedings of the 5th ACM
international Conference on Embedded Software (Jersey City, NJ, USA,
September 18 - 22, 2005).EMSOFT '05. ACM, New York, NY, 371-
374.

[62] Sinhaa, P. &Hanumantharyab, A. (2005). A novel approach for
component-based fault-tolerant software development. Information and
Software Technology, Volume 47, Issue 6, 15 April 2005, Pages 365-
382.

[63] Wuyts, R., Ducasse, S. &Nierstrasz, O. (2005). A data-centric approach
to composing embedded, real-time software components. (Electronic
Version). Journal of System and Software. 74, 1 (Jan. 2005), 25-34.

[64] Loyall, J. P. &Mathisen, S. A. (1993). Using Dependence Analysis to
Support the Software Maintenance Process. In Proceedings of the
Conference on Software Maintenance D. N. Card, Ed. IEEE Computer
Society, Washington, DC, 282-291.

[65] Vieira, M. and Richardson, D. (2002). Analyzing Dependencies in Large
Component-Based Systems.In Proceedings of the 17th IEEE
international Conference on Automated Software Engineering
(September 23 - 27, 2002).Automated Software Engineering.IEEE
Computer Society, Washington, DC, 241.

[66] Chen, J. 2007. Component Oriented Design Style. In Proceedings of the
31st Annual international Computer Software and Applications
Conference - Vol. 2- (COMPSAC 2007) - Volume 02 (July 24 –
27).COMPSAC. IEEE Computer Society, Washington, DC, 651-657.

[67] Guo, J. (2002(a)). Using Category Theory to Model Software
Component Dependencies.In Proceedings of the 9th IEEE international
Conference on Engineering of Computer-Based Systems (April 08 - 11,
2002).IEEE Computer Society, Washington, DC, 185.

[68] Stankovic, j. A., Zhu, R., Poornalingam, R., Lu, C., Yu, Z., Humphrey,
M. & Ellis, B. (2003). VEST: An Aspect-Based Composition Tool for
Real-Time Systems. In Proceedings of the The 9th IEEE Real-Time and
Embedded Technology and Applications Symposium, p.58, May 27-
30,Washington, DC.

[69] Yan S, Wang J, Liu C, Liu L (2008), An approach to discover
dependencies between service operations. Journal of Software, 3(9):36-
43.

[70] Brown, A., Johnston, S.and Kelly, K. (2002). “Using Service Oriented
Architecture and Component-Based Development to Build Web Service
Applications”, A Rational Software White Paper, 2002. Breivold, H. and
Larsson, M. &ldquo,(2007) Component-Based and Service-Oriented
Software Engineering: Key Concepts and Principles,&rdquo, Proc.
EUROMICRO Conf. Software Eng. and Advanced Applications, pp. 13-
20, Aug. 2007.

[71] Iribarne, L.: Web Components: A comparison between Web services
and software components. Colombian Journal of Computation, 5(1), 47–
66 (2004).’

[72] Bucanac, C. (1995). Problems With Component Based Software
Development- A Comparison between Theory and Practice. Master
Thesis, Department of Software Engineering and Computer Science,
University of Karlskrona, Sweden.

[73] Maiden, N. A. & Ncube, C. Acquiring COTS Software Selection
Requirements, IEEE Software, March/April 1998.

[74] Gatherer, A., From 2008 to 2020:A history of developments in
programmability, Article on Web. Access at:
http://www.ti.com/lit/wp/spry118/spry118.pdf.

[75] Dai, H., Chen, T., Jia, Z. (2009), Component-Based Multi-Threading
Support of the Multi-Core Mobile Software, WRI International
Conference on Communications and Mobile Computing, 2009. CMC
'09, Yunnan, 6-8 Jan. 2009, pp. 17-20.

[76] Macariu, G., Cretu, V. (2011),Enabling Parallelism and Resource
Sharing in Multi-core Component-based Systems, 14th IEEE
International Symposium on Object/Component/Service-Oriented Real-
Time Distributed Computing (ISORC), 28-31 March 2011, Newport
Beach, CA, pp. 269-277.

