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Abstract—In general, classical methods such as maximum 

likelihood (ML) and least squares (LS) estimation methods are used 

to estimate the shape parameters of the Burr XII distribution. 

However, these estimators are very sensitive to the outliers. To 

overcome this problem we propose alternative robust estimators 

based on the M-estimation method for the shape parameters of the 

Burr XII distribution. We provide a small simulation study and a real 

data example to illustrate the performance of the proposed estimators 

over the ML and the LS estimators. The simulation results show that 

the proposed robust estimators generally outperform the classical 

estimators in terms of bias and root mean square errors when there 

are outliers in data. 

 

Keywords—Burr XII distribution, robust estimator, M-estimator, 

maximum likelihood, least squares. 

I. INTRODUCTION 

HE Burr XII distribution was first introduced by [1]. This 

distribution is also known as “Singh-Maddala” 

distribution. It has been widely used as a model in areas such 

as business [2], economics [3], engineering [4], finance [4], 

hydrology [5], mineralogy [6], medical research [7] and 

reliability analysis [7]–[10]. Its properties were studied by [11] 

and [12]. Details on the connection between the Burr XII 

distribution and other continuous distributions were given by 

[13], [14].  

The shape parameters of Burr XII distribution have been 

estimated by using the ML, LS and the maximum product of 

spacing estimation methods. The ML estimation method was 

used by [7]. The ML, LS and the maximum product of spacing 

estimation methods were compared by [15] in presence and in 

absence of outliers. Also, the ML and the maximum product of 

spacing estimation methods were compared by [16]. 

The estimators obtained from the classical methods perform 

well when there are no outliers in the data. However, it is 

known that these estimators are very sensitive to the outliers. 

Therefore, robust estimation methods should be used to 

estimate the shape parameters of the Burr XII distribution. The 

robust estimators will perform as good as the classical 

estimators when there are no outliers in the data and will be 

less influenced by the outliers if there are some potential 

outliers. For this reason, the robust regression estimation 

method was used by [17] to estimate the shape parameters of 

the Burr XII distribution for complete and multiply-censored 

data with outliers. The optimal B-robust (OBR) estimation 

method is proposed by [18] to obtain robust estimators for the 

 
F. Z. Doğru and O. Arslan are with the Ankara University, Faculty of 

Science, Department of Statistics, 06100 Ankara/Turkey (e-mail: fzdogru@ 
ankara.edu.tr, oarslan@ ankara.edu.tr).  

shape parameters of this distribution. 

In this paper, an alternative robust estimation method based 

on the M-estimation method is proposed to estimate the shape 

parameters of the Burr XII distribution. The proposed method 

is based on minimizing a robust objective function instead of 

LS objective function.  

The rest of the paper is organized as follows. In Section II, 

we give some properties of the Burr XII distribution. In 

Section III, we summarize the ML and the LS estimation 

methods and describe the proposed robust estimation method 

for the shape parameters of the Burr XII distribution. In 

Sections IV and V, we give a small simulation study and a real 

data example to compare the performances of the proposed 

estimators with the ML and the LS estimators. The paper is 

finalized with a conclusion section. 

II. THE BURR XII DISTRIBUTION 

The cumulative density function (cdf) and probability 

density function (pdf) for a two parameter Burr XII 

distribution are given by: 
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where c  and k  are shape parameters. If a random variable X

has a Burr XII distribution, then the r th moment of X  is  
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where ( )Γ ⋅  is the gamma function. 

To have the fourth moment ck  should be greater than 4. By 

using (3), expected value, variance, skewness 
1( )β  and 

kurtosis 
2( )β  for the Burr XII distribution can be obtained as  
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where ( ) ( )
( ) ( )

,B
α β

α β
α β

Γ +
=

Γ Γ
 is the beta function and 

( ) ( )1 , 1,2,3,4.j j c k j c jλ = Γ + Γ − =  Fig. 1 shows some example 

of the Burr XII density function for some values of c  and k . 

We can see from the pdf plots that the shape parameters c  and 

k  control the peakedness, skewness and the tail thickness of 

the Burr XII distribution. We can observe that if 1,c >  the pdf 

is unimodal with the mode at ( ) ( )( )1
1 1 ,

c
x c kc= − +  and if 

1,c ≤  the pdf has L-shaped. 

 

 

Fig. 1 Examples of the Burr XII density function for different values 

of c  and k  

III. PARAMETERS ESTIMATION 

In this section, we will first review the ML and the LS 

estimation methods to estimate the shape parameters of the 

Burr XII distribution. We will then introduce the robust 

estimators based on the M-estimation method given in [19]. 

A. ML Estimation Method 

Let 
1 2( , ,..., )nX x x x=  be a random sample from a Burr XII 

distribution and assume that the shape parameters c  and k  

are unknown. The ML estimators for c  and k  can be found 

by maximizing the following log-likelihood function  
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After taking the derivative of ( )log ,L c k  with respect to c  

and k  and setting to zero, the following equations are 

obtained 
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Since the above equations cannot be solved analytically, 

numerical methods should be used to obtain the ML estimates. 

B. LS Estimation Method 

The shape parameters � and � are estimated by [15] using 

the LS estimation method. The LS estimators for c  and k  can 

be obtained by minimizing the following objective function 

with respect to c  and k  
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 Since ( )F x  is 

unknown the following approximation can be used to 

determine the values of iy  
 

( )( )( )

0.5
, 1, 2,..., ,i

i
E F x i n

n

−
= =

      
(12) 

 

where 
( )ix  are the order statistics and ( )( )i

F x  is uniformly 

distributed on ( )0,1 .  The following equations should be solved 

to obtain the LS estimators for c  and k  
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Similarly, since these equations cannot also be solved 

explicitly, numerical methods should be used to obtain the LS 

estimates. 

C. Robust Estimation Method 

Since the LS estimators are sensitive to the outliers in data, 

robust estimators are proposed by [17] and [18] to estimate the 

shape parameters of Burr XII distribution. In those papers, the 

robust regression and the OBR estimation methods are used to 

obtain robust estimators for c  and .k  In the present paper, we 

propose alternative robust estimators for the shape parameters 

of the Burr XII distribution by minimizing the following 

objective function with respect to the parameters c  and k  
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We will use two different ρ  functions. One of them is the 

Huber’s ρ  function  
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The other is the Tukey’s ρ  function  
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Taking the derivatives of the objective function given in 

(15) with respect to c  and k and setting to zero give the 

following equations 
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We can further simplify these equations as  
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where , 1,...,iw i n=  are the weights. The weights for the 

Huber’s ρ  function are obtained as 
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If ( )log log log 1 ,c

i iy k x b− − + ≤  the weight will be 1, 

otherwise it will be 

( )
.

log log log 1 c

i i

b
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 The weights for 

the Tukey’s ρ
 
function are  
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 if

( )log log log 1 ,c

i iy k x b− − + ≤  otherwise it will be 0. We can 

observe that the weights eliminate the effect of outliers on the 

estimators.  

Since we cannot get explicit solutions of these equations, 

they should also be solved numerically to obtain the robust 

estimates for the parameters c  and .k   

IV. SIMULATION STUDY 

In this section, we provide a small simulation study to 

compare the performances of the ML, LS and the robust 

estimators with and without outliers. The data were generated 

from the Burr XII distribution for several different values of c  

and .k  To evaluate the performance of the estimators, bias 

and root mean square errors (RMSE)  
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They were calculated using 1000 replications for each 

sample sizes and parameter values, where 

1 1

ˆˆ1 , 1
N N

i ii i
c N c k N k

= =
= =∑ ∑  and 1000.N =  Note that we have 

tried several different number of replications, but the results 

were very similar to the case 1000.N =  That’s why we take 

the number of replications as 1000.  

In the simulation study we set 20,40n =  and 80.  The case 

20,40n =  and 80  represent the small, moderate and the large 

sample sizes, respectively. We also take

( , ) (1,1), (1,2), (2,1), (2,2), (2,5), (5,2)c k =  to compare our 

results with the results given in literature (see [9], [15]). For 

each simulation configuration, the biases and the RMSEs were 

obtained with and without outliers. Tuning constants for 

Tukey’s ρ  and Huber’s ρ  functions are taken as 4 and 

1.345, respectively. The simulation study and real data 

example are conducted using MATLAB 2013a. 

Simulation results are summarized in Tables I-VI. In these 

tables ˆˆ ˆ( ), ( ), ( )bias c bias k RMSE c  and ˆ( )RMSE k  are provided. 

The simulation results for the datasets without outliers are 

given in Tables I-III. We can observe from these tables that 



International Journal of Engineering, Mathematical and Physical Sciences

ISSN: 2517-9934

Vol:9, No:5, 2015

263

 

 

although all the estimation methods considered in this paper 

have very similar performance when there are no outliers, the 

simulation results obtained from Tukey’s ρ  function 

generally show superiority in terms of RMSE and bias. The 

absence of outliers in the data leads to an over-estimation of 

the parameters in most simulation conditions. 
 

TABLE I 

THE BIAS AND RMSE (PARENTHESES) FOR 20n = WITHOUT OUTLIERS 

� (�, �) 
Parameter (c) 

ML LS Huber Tukey 

20 

(1,1) 
0.0699 0.0243 0.0417 0.0646 

(0.2453) (0.2520) (0.2478) (0.2466) 

(1,2) 
0.0633 0.0139 0.0377 0.0345 

(0.1990) (0.2219) (0.1562) (0.1489) 

(2,1) 
0.1517 0.0602 0.1339 0.1309 

(0.5169) (0.5199) (0.5385) (0.5217) 

(2,2) 
0.1065 0.0260 0.0751 0.0828 

(0.4067) (0.4446) (0.3087) (0.3039) 

(2,5) 
0.1300 0.0181 0.0373 0.0320 

(0.3991) (0.4148) (0.1323) (0.1446) 

(5,2) 
0.3861 0.1470 0.2140 0.2525 

(1.0494) (1.1070) (0.7472) (0.7518) 

  Parameter (k) 

20 

(1,1) 
0.0410 0.0296 0.0644 0.0613 

(0.2723) (0.2655) (0.3230) (0.3153) 

(1,2) 
0.1522 0.0745 0.1157 0.1112 

(0.6080) (0.6081) (0.6404) (0.6297) 

(2,1) 
0.0361 0.0274 0.0568 0.0536 

(0.2786) (0.2738) (0.3134) (0.3095) 

(2,2) 
0.1049 0.0370 0.1014 0.0953 

(0.5194) (0.5076) (0.6338) (0.6187) 

(2,5) 
0.9003 0.4097 0.2704 0.2555 

(2.4891) (2.2440) (1.4968) (1.4882) 

(5,2) 
0.1329 0.0552 0.0771 0.0724 

(0.5869) (0.5750) (0.6390) (0.6245) 

 

TABLE II 

THE BIAS AND RMSE (PARENTHESES) FOR 40n = WITHOUT OUTLIERS 

� (�, �) 
Parameter (c) 

ML LS Huber Tukey 

40 

(1,1) 
0.0384 0.0104 0.0336 0.0398 

(0.1660) (0.1786) (0.1789) (0.1786) 

(1,2) 
0.0335 0.0052 0.0241 0.0245 

(0.1367) (0.1585) (0.1163) (0.1113) 

(2,1) 
0.0760 0.0186 0.0659 0.0682 

(0.3212) (0.3452) (0.3298) (0.3264) 

(2,2) 
0.0749 0.0279 0.0756 0.0714 

(0.2693) (0.3145) (0.2125) (0.2129) 

(2,5) 
0.0641 0.0109 0.0335 0.0305 

(0.2603) (0.3002) (0.1087) (0.1054) 

(5,2) 
0.1214 -0.0127 0.0946 0.1168 

(0.6587) (0.7533) (0.5253) (0.5371) 

  Parameter (k) 

40 

(1,1) 
0.0092 0.0030 0.0212 0.0197 

(0.1766) (0.1732) (0.2082) (0.2031) 

(1,2) 
0.0530 0.0087 0.0391 0.0334 

(0.3528) (0.3714) (0.4283) (0.4191) 

(2,1) 
0.0158 0.0102 0.0259 0.0253 

(0.1843) (0.1828) (0.2116) (0.2096) 

(2,2) 
0.0767 0.0421 0.0505 0.0443 

(0.3799) (0.3976) (0.4362) (0.4256) 

(2,5) 
0.3515 0.1469 0.1074 0.1047 

(1.2625) (1.3344) (1.1094) (1.0973) 

(5,2) 
0.0699 0.0259 0.0729 0.0688 

(0.3666) (0.3737) (0.4409) (0.4334) 

 

TABLE III 

THE BIAS AND RMSE (PARENTHESES) FOR 80n = WITHOUT OUTLIERS 

� (�, �) 
Parameter (c) 

ML LS Huber Tukey 

80 

(1,1) 
0.0140 -0.0018 0.0189 0.0208 

(0.1084) (0.1218) (0.1280) (0.1263) 

(1,2) 
0.0184 0.0047 0.0195 0.0186 

(0.0945) (0.1147) (0.0783) (0.0789) 

(2,1) 
0.0443 0.0072 0.0540 0.0446 

(0.2234) (0.2583) (0.2539) (0.2431) 

(2,2) 
0.0373 0.0067 0.0361 0.0343 

(0.1890) (0.2289) (0.1576) (0.1615) 

(2,5) 
0.0362 0.0060 0.0259 0.0287 

(0.1719) (0.2158) (0.0807) (0.0759) 

(5,2) 
0.0535 -0.0325 0.0863 0.0632 

(0.4326) (0.5360) (0.3672) (0.3848) 

  Parameter (k) 

80 

(1,1) 
0.0101 0.0071 0.0187 0.0178 

(0.1265) (0.1272) (0.1511) (0.1485) 

(1,2) 
0.0184 0.0047 0.0195 0.0186) 

(0.0945) (0.1147) (0.0783) (0.0789) 

(2,1) 
0.0035 -0.0006 0.0083 0.0073 

(0.1266) (0.1268) (0.1521) (0.1494) 

(2,2) 
0.0242 -0.0013 0.0113 0.0121 

(0.2361) (0.2503) (0.3001) (0.2956) 

(2,5) 
0.1388 0.0299 0.0037 0.0104 

(0.7470) (0.9150) (0.7322) (0.7214) 

(5,2) 
0.0462 0.0186 0.0506 0.0487 

(0.2548) (0.2696) (0.3039) (0.3050) 

 

In Tables IV-VI we give the simulation results for the case 

with outliers. The outliers are generated by shifting the largest 

observations to the right in the X  direction. For the small 

sample size ( 20)n =  we have one outlier, for the moderate 

sample size ( 40)n =  we have two outliers and for the large 

sample size ( 80)n =  we have four outliers.  

Table IV presents the simulation results for the case with 

one outlier. From this table, we can observe that the robust 

estimators have lower bias and RMSE for the parameter c . 

Concerning the parameter ,k  the robust estimators and the LS 

estimators give similar results. Only for the case ( , ) (2,5)c k =  

and (5,2)  the robust estimators show superiority to the LS 

estimator. The robust estimators outperform the ML estimator 

in all the cases. 

In Table V, we present the simulation results for the case 

with two outliers. For the parameter ,c  the robust estimators 

have lower RMSE than the ML and the LS estimators in all 

simulation conditions. In general, the robust estimators have 

the lowest RMSE for the parameter .k  For example, for the 

case ( , ) (2,2)c k =  the ML and LS estimators have the larger 

bias and RMSE values than the robust estimators. 

We summarize the simulation results for the case four 

outliers in Table VI. From this table, we can also observe that 

the robust estimators have lower bias and RMSE values than 

the ML and the LS estimators in almost all the simulation 

configurations.  
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In summary, unlike the ML and LS estimators, the robust 

estimators show similar performance for the case with and 

without outliers. Therefore, since the robust estimators are not 

influenced by the outliers, they can be used instead of ML or 

LS estimators. 
 

TABLE IV 

 THE BIAS AND RMSE (PARENTHESES) FOR 20n = WITH ONE OUTLIER 

� (�,�) 
Parameter (c) 

ML LS Huber Tukey 

20 

(1,1) 
-0.0902 -0.0348 -0.0103 0.0048 

(0.2199) (0.2329) (0.2175) (0.2128) 

(1,2) 
-0.2729 -0.1028 -0.0473 -0.0333 

(0.2992) (0.2084) (0.1294) (0.1226) 

(2,1) 
-0.3837 -0.1629 -0.0885 -0.0550 

(0.5486) (0.4660) (0.4208) (0.4108) 

(2,2) 
-0.7613 -0.2905 -0.0892 -0.0544 

(0.7888) (0.4572) (0.2633) (0.2593) 

(2,5) 
-1.0811 -0.5426 -0.0831 -0.0108 

(1.0851) (0.5852) (0.1361) (0.1218) 

(5,2) 
-2.6302 -1.0417 -0.2051 0.0921 

(2.6589) (1.2914) (0.6386) (0.6412) 

  Parameter (k) 

20 

(1,1) 
-0.2366 -0.0718 -0.0210 -0.0153 

(0.2865) (0.2212) (0.2840) (0.2823) 

(1,2) 
-0.7719 -0.3405 -0.0150 0.0004 

(0.7928) (0.4718) (0.6392) (0.6372) 

(2,1) 
-0.3712 -0.1082 -0.0151 -0.0102 

(0.3948) (0.2265) (0.3132) (0.3110) 

(2,2) 
-1.0549 -0.4778 -0.0523 -0.0233 

(1.0622) (0.5444) (0.6014) (0.6179) 

(2,5) 
-3.6616 -2.4906 -0.1620 0.1015 

(3.6630) (2.5095) (1.5095) (1.6367) 

(5,2) 
-1.3711 -0.6411 -0.0679 0.0305 

(1.3736) (0.6715) (0.6012) (0.6439) 

 

TABLE V 

 THE BIAS AND RMSE (PARENTHESES) FOR 40n = WITH TWO OUTLIERS 

� (�, �) 
Parameter (c) 

ML LS Huber Tukey 

40 

(1,1) 
-0.1272 -0.0523 -0.0364 -0.0280 

(0.1862) (0.1706) (0.1555) (0.1524) 

(1,2) 
-0.2836 -0.1014 -0.0469 -0.0374 

(0.2940) (0.1633) (0.0964) (0.0914) 

(2,1) 
-0.4287 -0.1591 -0.1043 -0.0640 

(0.5003) (0.3617) (0.3268) (0.3253) 

(2,2) 
-0.7938 -0.3004 -0.1155 -0.0915 

(0.8040) (0.3768) (0.1937) (0.1848) 

(2,5) 
-1.0920 -0.5145 -0.0787 -0.0144 

(1.0938) (0.5384) (0.1062) (0.0856) 

(5,2) 
-2.7026 -1.0492 -0.2811 -0.0156 

(2.7145) (1.1938) (0.5093) (0.4814) 

  Parameter (k) 

40 

(1,1) 
-0.2371 -0.0749 -0.0342 -0.0279 

(0.2634) (0.1661) (0.2058) (0.2046) 

(1,2) 
-0.7768 -0.3403 -0.0873 -0.0729 

(0.7862) (0.4090) (0.4078) (0.4039) 

(2,1) 
-0.3714 -0.1086 -0.0450 -0.0362 

(0.3826) (0.1774) (0.2078) (0.2052) 

(2,2) 
-1.0516 -0.4637 -0.0841 -0.0521 

(1.0550) (0.5021) (0.4132) (0.4221) 

(2,5) 
-3.6583 -2.3912 -0.2269 0.0211 

(3.6589) (2.4056) (1.0440) (1.1047) 

(5,2) 
-1.3627 -0.6126 -0.0787 0.0201 

(1.3639) (0.6319) (0.4271) (0.4535) 

 
 

TABLE VI 

THE BIAS AND RMSE (PARENTHESES) FOR 80n = WITH FOUR OUTLIERS 

� (�, �) 
Parameter (c) 

ML LS Huber Tukey 

80 

(1,1) 
-0.1372 -0.0543 -0.0420 -0.0325 

(0.1677 (0.1331) (0.1226) (0.1179) 

(1,2) 
-0.2908 -0.1015 -0.0518 -0.0440 

(0.2961 (0.1389) (0.0797) (0.0768) 

(2,1) 
-0.4515 -0.1680 -0.1190 -0.0962 

(0.4823 (0.2790) (0.2423) (0.2315) 

(2,2) 
-0.7975 -0.2733 -0.1053 -0.0843 

(0.8030 (0.3220) (0.1564) (0.1449) 

(2,5) 
-1.0945 -0.4923 -0.0776 -0.0198 

(1.0953 (0.5065) (0.0930) (0.0724) 

(5,2) 
-2.7133 -0.9966 -0.3046 -0.0473 

(2.7185) (1.0709) (0.4326) (0.3259) 

  Parameter (k) 

80 

(1,1) 
-0.2387 -0.0767 -0.0486 -0.0394 

(0.2534) (0.1352) (0.1502) (0.1494) 

(1,2) 
-0.7816 -0.3429 -0.1135 -0.0920 

(0.7864) (0.3806) (0.3103) (0.3051) 

(2,1) 
-0.3705 -0.1095 -0.0584 -0.0487 

(0.3760) (0.1480) (0.1523) (0.1487) 

(2,2) 
-1.0528 -0.4494 -0.1138 -0.0831 

(1.0546) (0.4707) (0.3086) (0.3088) 

(2,5) 
-3.6610 -2.3437 -0.3151 -0.0799 

(3.6614) (2.3529) (0.7721) (0.7792) 

(5,2) 
-1.3640 -0.6047 -0.1234 -0.0270 

(1.3646) (0.6150) (0.2958) (0.2945) 

V. REAL DATA EXAMPLE 

In this section we will analyze the data set given by [20]. 

This dataset is also considered by [21] to demonstrate the 

potential of a new family of distributions obtained by 

compounding the Burr XII and power series distributions. 

Further, the same dataset is used by [18] to illustrate the 

modeling and the capability of the OBR estimation method. 

The data set, which is given in Table VII, contains the failure 

times of 20 mechanical components. The unit for 

measurement is 1000 h. The boxplot of the dataset given in 

Fig. 2 displays a potential outlier in the dataset. 
 

TABLE VII 

THE FAILURE TIMES OF 20 MECHANICAL COMPONENTS 

0.067 0.068 0.076 0.081 

0.085 0.085 0.086 0.089 

0.098 0.114 0.114 0.115 

0.125 0.131 0.149 0.160 

 

We fit a Burr XII distribution to the failure time dataset and 

estimate the unknown shape parameters c  and k  using the 

ML, LS and the robust estimation methods. Table VIII gives a 

summary of fitting the Burr XII distribution obtained from the 

ML, LS and the robust estimation methods for this dataset. In 

Fig. 3, we can see that the fitted density obtained from Tukey 

estimates comparably better than the other fitted densities in 

terms of modeling the data. The fitted density obtained from 

Huber estimates is also better than the fitted density obtained 

from the ML and the LS estimates.  
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TABLE VIII 

 ML, LS AND ROBUST ESTIMATES FOR THE FAILURE TIME DATASET 

Method ĉ  k̂  

ML 1.6924 29.9046 

LS 2.2980 96.3514 

Huber 2.3330 109.9964 

Tukey 2.4665 153.2042 

 

 

Fig. 2 Boxplot of the failure time dataset 

 

 

Fig. 3 Histogram with the fitted densities obtained from the ML, LS 

and the robust estimation methods 

VI. CONCLUSION 

In this paper, we have proposed alternative robust 

estimators for the shape parameters of the Burr XII 

distribution. We have explored the effect of outliers on the ML 

and the LS estimators and the newly proposed robust 

estimators. The simulation results confirmed that without 

outliers the robust, the ML and LS estimators have similar 

performance. On the other hand, the robust estimators perform 

better than the ML and the LS estimators when there are 

outliers in the data. We have also observed the same results 

for the real data example. In particular the robust estimator 

obtained from Tukey’s ρ  function, is better than the ML and 

the LS estimators in terms of coping with the outliers.  

Finally, finding the estimators for the Burr XII distribution 

is a challenging problem. There are many methods introduced 

to obtain estimators for the shape parameters. Here we can 

conclude that the robust estimators presented in this paper can 

be plausible alternative to the estimators given in literature. 
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