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Abstract—In this paper, we introduced a gradient-based inverse 

solver to obtain the missing boundary conditions based on the 

readings of internal thermocouples. The results show that the method 

is very sensitive to measurement errors, and becomes unstable when 

small time steps are used. The artificial neural networks are shown to 

be capable of capturing the whole thermal history on the run-out 

table, but are not very effective in restoring the detailed behavior of 

the boundary conditions. Also, they behave poorly in nonlinear cases 

and where the boundary condition profile is different.   

 GA and PSO are more effective in finding a detailed 

representation of the time-varying boundary conditions, as well as in 

nonlinear cases. However, their convergence takes longer. A 

variation of the basic PSO, called CRPSO, showed the best 

performance among the three versions. Also, PSO proved to be 

effective in handling noisy data, especially when its performance 

parameters were tuned. An increase in the self-confidence parameter 

was also found to be effective, as it increased the global search 

capabilities of the algorithm. RPSO was the most effective variation 

in dealing with noise, closely followed by CRPSO. The latter 

variation is recommended for inverse heat conduction problems, as it 

combines the efficiency and effectiveness required by these 

problems. 

 

Keywords—Inverse Analysis, Function Specification, Neural Net 

Works, Particle Swarm, Run Out Table.  

I. INTRODUCTION 

N an inverse heat conduction problem (IHCP), the boundary 

conditions, initial conditions, or thermo-physical properties 

of material are not fully specified. These properties are 

determined from measured internal temperature profiles. The 

challenge is that the effect of changes in boundary conditions 

are normally damped or lagged, that would be a typically ill 

posed and sensitive to measurement errors. Also, in the 

uniqueness and stability of the solution are not generally 

guaranteed [1], [2].   

 Inverse heat conduction problems may be reformulated as 

an optimization problem with an objective function that would 

be normally highly nonlinear and would involve the squared 

difference between measured (vector Y) and estimated 

unknown variables (vector T), i.e.:   
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Normally a regularization term should be added to Eqn. 1 in 

order to eliminate oscillations and enhance solution stability.  

The above equation is only valid, if the measured temperatures 

and the associated errors have certain statistical characteristics 

stated in [3].  

While classical methods, such as the least square 

regularization method [4], the sequential function specification 

method [1]-[4], the space marching method [5], conjugate 

gradient method [6], steepest descent method [7], and the 

model reduction algorithm [8] are vastly studied in the 

literature, and applied to the problems in thermal engineering 

[9]-[11], there are still some unsolved problems. The main 

problems are solution stability, damping peak heat fluxes, 

measurement errors sensitivity, time step limit and temporal 

resolutions. More recent optimization techniques may be used 

in the solution of the IHCPs to aid in solving such problems. 

Some of these techniques are briefly outlined in the following 

section. 

The Genetic Algorithm technique has been widely adopted 

to solve inverse problems [12], [13]. Genetic algorithms 

(GAs) belong to the family of computational techniques 

originally inspired by the living nature. They perform random 

search optimization algorithms to find the global optimum to a 

given problem. The main advantage of GAs may not 

necessarily be their computational efficiency, but their 

robustness and ability to reach a global optimum. Luckily, 

they are inherently parallel algorithms, and can be easily 

implemented on parallel structures. 

Artificial neural networks can be successfully applied in the 

solution of inverse heat conduction problems [14]-[15]. They 

are capable of dealing with significant non-linearities and are 

known to be effective in damping the measurement errors.  

 The method of Self-learning finite elements (FE) combines 

neural network with nonlinear FE in an algorithm, which uses 

basic conductivity measurements to produce a constitutive 

model of the material under study [12]. It is also shown to 

exhibit a great stability when dealing with noisy data.  

 The method of Maximum entropy seeks the solution that 

maximizes the entropy functional under given temperature 

measurements. It converts the inverse problem to a non-linear 

constrained optimization problem. The constraint is the 

statistical consistency between the measured and estimated 

temperatures. It can guarantee the uniqueness of the solution 

[16].  

 In the technique of Proper Orthogonal Decomposition, the 

idea is to expand the direct problem solution into a sequence 
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of orthonormal basis vectors, describing the most essential 

features of spatial and temporal variation of the temperature 

field. This can result in the filtration of the noise in the field 

under study [17].  

 The Particle Swarm Optimization (PSO) is a population 

based stochastic optimization technique, inspired by social 

behavior of bird flocking or fish schooling. Unlike GA, PSO 

has no evolution operators such as crossover and mutation. In 

PSO, the potential solutions, called particles, fly through the 

problem space by following the current optimum particles. 

Compared to GA, the advantages of PSO are ease of 

implementation and that there are few parameters to adjust. 

Some researchers showed that it requires less computational 

expense when compared to GA for the same level of accuracy 

in finding the global minimum [18].   

II. ASSESSED TECHNIQUES 

A. Function Specification Methods 

As mentioned above it is very common to include more 

variables in the objective function to stabilize the solution. A 

common choice in inverse heat transfer problems is to use a 

scalar quantity based on the boundary heat fluxes, with a 

weighting parameter α, which is normally called the 

regularization parameter. In [11], it is shown that using the 

heat flux values (zeroth-order regularization) is the most 

suitable choice. The objective function then will be  
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where ��
�  and ��

�  are the vectors of expected (measured) and 

calculated temperatures at the i
th

 time step, respectively, each 

having J spatial components; α is the regularization 

coefficient; and q
i
 is the boundary heat flux.  Because inverse 

problems are generally ill posed, the solution may not be 

unique and would be in general sensitive to measurement 

errors. To decrease such sensitivity and improve the 

simulation, a number of future time steps (nFTS) are utilized in 

the analysis of each time step.  Details of this algorithm may 

be found in [11]. 

B. Genetic Algorithm 

Genetic algorithm is widely used in stochastic optimization 

method and in heat transfer applications, including inverse 

heat transfer analysis [19]. GA starts its search from a 

randomly generated population. This population evolves over 

successive generations (iterations) by applying three major 

operations. The first operation is “Selection”, which mimics 

the principle of “Survival of the Fittest” in nature. It finds the 

members of the population with the best performance, and 

assigns them to generate the new members for future 

generations. The second operator is called “Reproduction” or 

“Crossover”, which imitates mating and reproduction in 

biological populations. It propagates the good features of the 

parent generation into the offspring population. The last 

operator is “Mutation”, which allows for global search of the 

best features, by applying random changes in random 

members of the generation. This operation is crucial in 

avoiding the local minima traps [20]. Among the many 

variations of GAs, in this study, we use a real encoded GA 

with roulette selection, intermediate crossover, and uniform 

high-rate mutation.   

C. Particle Swarm Optimization  

Particle swarm optimization (PSO) is a high-performance 

stochastical search algorithm that can also be used to solve 

inverse problems. The method is based on the social behavior 

of species in nature, e.g., a swarm of birds or a school of fish 

[22]. In the original PSO algorithm [21] the velocity of a 

particle i in a given iteration m is updated with a velocity 

vector according to the following relation:  
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where  �
� and ��

� are the position and velocity of particle i at 

the m-th iteration, respectively; ��
� and g

m
 are the best 

positions found up to now by this particle (local memory) and 

by the whole swarm (global memory) so far in the iterations, 

respectively; c0 is called the inertia coefficient or the self-

confidence parameter and is usually between zero and one; c1 

and c2 are the acceleration coefficients that pull the particles 

toward the local and global best positions; and r1 and r2 are 

random vectors in the range of (0,1). The ratio between these 

three parameters controls the effect of the previous velocities 

and the trade-off between the global and local exploration 

capabilities.   

One popular way of preventing divergence in PSO is a 

technique called “constriction”, which dynamically scales the 

velocity update [21]. The first method was used in the 

previous research by [23]. However, further investigation 

showed that a better performance is obtained when combining 

the constriction technique with limiting the maximum 

velocity. In this work, the velocity updates are done using 

constriction and can be written as:  
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where K is the constriction factor, and is calculated as [21]: 
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where φ = c1 + c2. Here, following the recommendations in 

[21], the initial values for c1 and c2 are set to 2.8 and 1.3, 

respectively. These values will be modified in subsequent 

iterations, as discussed below. 

Several variants of PSO have been developed to improve 

the performance of the basic algorithm [22]-[24]. One of these 

variants is called the Repulsive Particle Swarm Optimization 

(RPSO), and is based on the idea that repulsion between the 

particles can be effective in improving the global search 

capabilities and finding the global minimum [25]. The velocity 

update equation for RPSO is; 
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where ��
� is the best position of a randomly chosen other 

particle among the swarm, c3 is an acceleration coefficient, 

is a random vector in the range of (0,1), and 

velocity component. The modified technique does not benefit 

from the global best position found. A modification to RPSO 

that also uses the tendency towards the best global point is 

called the “Complete Repulsive Particle Swarm Optimization” 

or CRPSO [23]. The velocity update equation for CPRSO will 

be: 
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In CRPSO, by having both an attraction t

particle’s best performance, and a repulsion from the best 

performance of a random particle, we are trying to create a 

balance between the local and global search operations. In 

[23], it was concluded then that the CRPSO variation is the 

suitable choice for IHCPs and several other modifications 

were presented. 

D.  Artificial Neural Networks  

Artificial Neural Networks (ANN) are motivated by the 

efficiency of brain in performing computations. These 

networks are made of a large number of processing uni

(neurons) that are interconnected through weighted 

connections, similar to synapses in brain. In order for the 

network to perform the expected tasks, it should first go 

through a “learning” process. There are two main categories of 

learning: supervised, or unsupervised. The supervised learning 

is useful in function fitting and prediction, while unsupervised 

learning is more applicable to pattern recognition and data 

clustering. Since the learning process in our application is a 

supervised one, we focus on this type of learning process. 

While there are several major classes of neural networks, in 

this paper we will test only two of types; Feedforward 

Multilayer Perceptrons (FMLP) and Radial Basis Function 

Networks (RBFN) as shown schematically in Fig

 

   

Fig. 1 (a) Feed-forward and (b) RBF network topology

  

In order to use the artificial neural networks in the inverse 

heat conduction problem, we first started with direct heat 

conduction FE code, and applied several sets of heat fluxes on 

the boundary. The resulting temperatures in locations inside 

the domain, which correspond to the thermocouple locations 

in the experiments, were obtained and used to train the neural 

network to reproduce the heat fluxes. In addition

was reformulated by using the change in temperature in each 

 

is the best position of a randomly chosen other 

is an acceleration coefficient, r3 

is a random vector in the range of (0,1), and vr is a random 

velocity component. The modified technique does not benefit 

from the global best position found. A modification to RPSO 

towards the best global point is 

called the “Complete Repulsive Particle Swarm Optimization” 

or CRPSO [23]. The velocity update equation for CPRSO will 


 � �  �
�� � �,�,��+

� �
                                        (7) 

In CRPSO, by having both an attraction toward the 

particle’s best performance, and a repulsion from the best 

performance of a random particle, we are trying to create a 

balance between the local and global search operations. In 

[23], it was concluded then that the CRPSO variation is the 

choice for IHCPs and several other modifications 

Artificial Neural Networks (ANN) are motivated by the 

efficiency of brain in performing computations. These 

networks are made of a large number of processing units 

(neurons) that are interconnected through weighted 

connections, similar to synapses in brain. In order for the 

network to perform the expected tasks, it should first go 

through a “learning” process. There are two main categories of 

or unsupervised. The supervised learning 

is useful in function fitting and prediction, while unsupervised 

learning is more applicable to pattern recognition and data 

clustering. Since the learning process in our application is a 

n this type of learning process. 

While there are several major classes of neural networks, in 

this paper we will test only two of types; Feedforward 

Multilayer Perceptrons (FMLP) and Radial Basis Function 

shown schematically in Fig. 1.  

 

rd and (b) RBF network topology 

In order to use the artificial neural networks in the inverse 

heat conduction problem, we first started with direct heat 

conduction FE code, and applied several sets of heat fluxes on 

ry. The resulting temperatures in locations inside 

the domain, which correspond to the thermocouple locations 

in the experiments, were obtained and used to train the neural 

In addition, the problem 

using the change in temperature in each 

time step as the input, which 

to the neural network. 

III. T

A block containing nine thermocouples is modeled for each 

pass of water jet cooling of a steel strip. The length of the 

block is 114.3 mm (9 sections of each 12.7 mm). The width 

and thickness are 12.7 mm and 6.65 mm, respectively. To 

model the thermocouple hole, a cylinder of radius 0.5 mm and 

height of 5.65 mm is taken out of the block. Isoparametric 

eight-node brick elements are used to discretize the domain. 

Fig. 2 (a) shows the whole domain, and Fig

view of one of the TC holes.  

  

Fig. 2 (a) The whole block consist

close-up view of the TC hole from bottom

 

 

Fig. 3 Cooling on a run-out table; (a) Surface heat fluxes; (b) Internal 

temperatures

  

The boundary condition on the top surface is prescribed 

heat flux, which is chosen to resemble the one in 

 showed much better performance 

TEST CASES 

A block containing nine thermocouples is modeled for each 

pass of water jet cooling of a steel strip. The length of the 

lock is 114.3 mm (9 sections of each 12.7 mm). The width 

and thickness are 12.7 mm and 6.65 mm, respectively. To 

model the thermocouple hole, a cylinder of radius 0.5 mm and 

height of 5.65 mm is taken out of the block. Isoparametric 

ts are used to discretize the domain. 

(a) shows the whole domain, and Fig. 2 (b) is a close-up 

 

 

2 (a) The whole block consisting of nine thermocouples, (b) A 

w of the TC hole from bottom 

 

 

out table; (a) Surface heat fluxes; (b) Internal 

temperatures 

The boundary condition on the top surface is prescribed 

is chosen to resemble the one in water-
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cooling of steel strips. Fig. 3 (a) shows the applied heat flu

on top of one of the thermocouple locations for the whole 

cooling process, while Fig. 3 (b) shows the history of the 

temperature drop at the corresponding thermocouple location.  

Fig. 4 shows a close-up of the applied heat flux and the FE 

results of the temperature history at five of the nine 

thermocouples locations, which resembles an actual heat flux 

values on a run-out table with two rows of staggered circular 

jets, impinging on the third and seventh locations [23]. The 

physical properties of the steel strips used in our experiment 

are: density, ρ, is 7850 kg/m
3
, Cp is 475 J kgK

conductivity, k, 40 W/m.°C (later changed to be temperature 

dependent). Results are obtained at the top of the cylindrical 

hole, which is the assumed position of a thermocouple. Inverse 

analysis is conducted to obtain the transient heat flux profile at 

the top surface of the plate.  

 

Fig. 4 (a) The applied heat flux on the top surface; (b) The 

thermocouple readings used for inverse analysis

IV. RESULTS AND DISCUSSION

We start by applying the artificial neura

inverse heat conduction problem. Fig. 5 shows the heat flux 

vs. time result of the application of the radial basis function 

neural networks for the whole history of the heat fluxes on the 

runout table. Temperatures start at 700 ºC and go 

ºC. As can be seen from this figure, neural networks are 

generally capable of dealing with the whole range of the 

cooling history.  

   

Fig. 5 Time History of Heat Fluxes in a Typical Run

Application; Expected Results (Squares) vs. t

Results (Line) 

 

However, going through the individual peaks of heat fluxes, 

it is apparent that the success or failure of NNs is not that 

 

(a) shows the applied heat fluxes 

on top of one of the thermocouple locations for the whole 

(b) shows the history of the 

temperature drop at the corresponding thermocouple location.  

up of the applied heat flux and the FE 

e temperature history at five of the nine 

resembles an actual heat flux 

out table with two rows of staggered circular 

jets, impinging on the third and seventh locations [23]. The 

el strips used in our experiment 

kgK, and the thermal 

(later changed to be temperature 

). Results are obtained at the top of the cylindrical 

hole, which is the assumed position of a thermocouple. Inverse 

ed to obtain the transient heat flux profile at 

 

4 (a) The applied heat flux on the top surface; (b) The 

dings used for inverse analysis 

ISCUSSION 

We start by applying the artificial neural networks to the 

5 shows the heat flux 

vs. time result of the application of the radial basis function 

neural networks for the whole history of the heat fluxes on the 

runout table. Temperatures start at 700 ºC and go down to 176 

ºC. As can be seen from this figure, neural networks are 

generally capable of dealing with the whole range of the 

 

5 Time History of Heat Fluxes in a Typical Run-Out Table 

Application; Expected Results (Squares) vs. the RBF Network 

However, going through the individual peaks of heat fluxes, 

it is apparent that the success or failure of NNs is not that 

much related to the temperature range, or the magnitude of 

heat fluxes, but on the actual shape of the 

the other hand, GA and PSO algorithms show reasonably good 

predictions of the details of the missing boundary conditions. 

The figures for the results of GA and PSO are not presented 

here for the sake of brevity, but can be found in [2

will be used, however, for comparisons in the next sections.

E.  Time Step Size and Efficiency 

Unlike direct problems where the stability requirement 

gives the upper limit of the time step size, in inverse problems 

the time step is bounded from belo

oscillation in the results obtained by the function specification 

method and a time step size of 0.01 (s), which corresponds to 

the onset of instability. PSO, GA, and NNs successfully 

produce, however, the results for the same 

presented in Fig. 6 (b) for PSO. Note that the oscillations here 

are not due to the instability caused by the time step size, and 

can be improved by performing more iterations. It is, however, 

important to mention that the time requiremen

techniques are much higher than those of the classical function 

specification approaches.   

 Now we compare the solution time required for GA, the 

three variations of PSO, and feed

function neural networks. We assume t

the solution. Table I compares the solution time for different 

inverse analysis algorithms. The fastest solution technique is 

the gradient-based function specification method. The 

stochastical methods such as GA and PSO variants su

high computational cost. RBF neural networks perform much 

faster than GA and PSO, but they are still slower than the 

gradient-based methods, such as function specification.

F. Noisy Domain Solution  

 To investigate the behavior of different algorithms 

noisy data, random errors are imposed onto the calculated 

exact internal temperatures with the following equation: 

 

Tm =T
 

where Tm is the virtual internal temperature that is used in the 

inverse calculations instead of the exact temperature, T

a normally distributed random variable with zero mean and 

unit standard deviation; and σ is

Virtual errors of 0.1% and 1% of the temperature magnitude 

are investigated here.  A more detailed comparison between 

the efficiency of GA and PSO variations can be found in [23].

Fig. 7 shows the results of the RBF network (red pl

versus the expected results (blue circles) for sample individual 

heat flux peaks during the cooling history of the plate. The 

amount of added noise in the figure is ±1%. There are several 

ways to make an inverse algorithm more stable when dealing 

with noisy data. For example, [11] have sho

the number of “future time steps” in their sequential function 

specification algorithm resulted in greater stability. They have 

also demonstrated that increasing the regularization parameter, 

α, improves the ability of the algorithm but 

much related to the temperature range, or the magnitude of 

heat fluxes, but on the actual shape of the heat flux profile. On 

the other hand, GA and PSO algorithms show reasonably good 

predictions of the details of the missing boundary conditions. 

The figures for the results of GA and PSO are not presented 

here for the sake of brevity, but can be found in [23]. They 

will be used, however, for comparisons in the next sections. 

Time Step Size and Efficiency  

Unlike direct problems where the stability requirement 

gives the upper limit of the time step size, in inverse problems 

the time step is bounded from below. Fig. 6 (a) [23] shows the 

oscillation in the results obtained by the function specification 

method and a time step size of 0.01 (s), which corresponds to 

the onset of instability. PSO, GA, and NNs successfully 

produce, however, the results for the same time step size as 

(b) for PSO. Note that the oscillations here 

are not due to the instability caused by the time step size, and 

can be improved by performing more iterations. It is, however, 

important to mention that the time requirements for these 

techniques are much higher than those of the classical function 

Now we compare the solution time required for GA, the 

three variations of PSO, and feed forward and radial basis 

function neural networks. We assume that there is no noise in 

compares the solution time for different 

inverse analysis algorithms. The fastest solution technique is 

based function specification method. The 

stochastical methods such as GA and PSO variants suffer a 

high computational cost. RBF neural networks perform much 

faster than GA and PSO, but they are still slower than the 

based methods, such as function specification. 

 

To investigate the behavior of different algorithms with 

noisy data, random errors are imposed onto the calculated 

exact internal temperatures with the following equation:  

=Texact +σ⋅r                      (8) 

is the virtual internal temperature that is used in the 

inverse calculations instead of the exact temperature, Texact; r is 

a normally distributed random variable with zero mean and 

unit standard deviation; and σ is the standard deviation. 

Virtual errors of 0.1% and 1% of the temperature magnitude 

are investigated here.  A more detailed comparison between 

the efficiency of GA and PSO variations can be found in [23]. 

Fig. 7 shows the results of the RBF network (red pluses) 

versus the expected results (blue circles) for sample individual 

heat flux peaks during the cooling history of the plate. The 

amount of added noise in the figure is ±1%. There are several 

ways to make an inverse algorithm more stable when dealing 

h noisy data. For example, [11] have shown that increasing 

the number of “future time steps” in their sequential function 

specification algorithm resulted in greater stability. They have 

also demonstrated that increasing the regularization parameter, 

α, improves the ability of the algorithm but on the expense of 
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requiring more iterations and the possibility of diverging. 

Their results are reproduced in Fig. 8. 

 

Fig. 6 Heat flux vs. time: (a) classical approach, (b) PSO [23]

   
TABLE I 

COMPARISON OF THE SOLUTION TIME FOR DIFFERENT 

ALGORITHMS 

Method 

Function Specification Method 

Genetic Algorithm, GA 

Particle Swarm Optimization, PSO 

Repulsive Particle Swarm Optimization, RPSO 

Complete Repulsive Particle Swarm Optimization, CRPSO

Feed-forward Multilayer Perceptron FMLP 

Radial Basis Function Networks, RBFN 

 

Fig. 7 Heat flux peaks vs. time from a typical run

application; Expected results (blue circles) vs. the RBF NN results 

(red pluses); Artificial noise added: c = ±1%

 

Another factor that can affect the performance of a PSO 

inverse approach in dealing with noisy data is the value of the 

self-confidence parameter, c0, or the ratio between this 

parameter and the acceleration coefficients. The acceleration 

coefficients are set to the default value of 1.42. The initial 

value of the self-confidence parameter, c0, is changed from 

the default value of 0.7.  As can be seen in 
10

), increasing the value of the self-confidence parameter 

results in better handling of the noisy data. As can be seen in 

Table II, the best effectiveness is normally obtained by RPSO, 

closely followed by CRPSO.   

G.  Effect of Non-Linearity  

 To investigate the effect of temperature dependent thermal 

properties, the following expression is assumed for the 

behavior of thermal conductivity: 

  

 

requiring more iterations and the possibility of diverging. 

 

Heat flux vs. time: (a) classical approach, (b) PSO [23] 

IFFERENT INVERSE ANALYSIS 

Solution 

Time (sec) 

1406 

8430 

6189 

5907 

Complete Repulsive Particle Swarm Optimization, CRPSO 6136 

7321 

2316 

 

7 Heat flux peaks vs. time from a typical run-out table 

application; Expected results (blue circles) vs. the RBF NN results 

d: c = ±1% 

Another factor that can affect the performance of a PSO 

inverse approach in dealing with noisy data is the value of the 

confidence parameter, c0, or the ratio between this 

parameter and the acceleration coefficients. The acceleration 

icients are set to the default value of 1.42. The initial 

confidence parameter, c0, is changed from 

the default value of 0.7.  As can be seen in Fig. 8 (for α = 10
-

confidence parameter 

er handling of the noisy data. As can be seen in 

, the best effectiveness is normally obtained by RPSO, 

To investigate the effect of temperature dependent thermal 

ression is assumed for the 

         k = 60.571−0.03849×T W/m.°C

  

As expected, the nonlinearity weakens the performance of 

both NN algorithms. The effect is seen as the training of the 

network stalls after a number of epochs. In order to deal with 

this, increasing the number of h

number of neurons in each layer, and choosing different types 

of transfer function were investigated. However, none of these 

methods showed a significant improvement in the behavior of 

the network. The other methods of solving 

problem are much less sensitive to the effect of nonlinearity.  

 

Fig. 8 Effect of Regularization Parameter 

  

 
TABLE

EFFECT OF THE SELF-CONFIDENCE P

IN THE 

C0 PSO 

0.7 8.105 E+4 

0.8 7.532 E+4 

0.95 6.257 E+4 

1.1 6.346 E+4 

1.2 6.117 E+4 

 

−0.03849×T W/m.°C        (9)  

As expected, the nonlinearity weakens the performance of 

both NN algorithms. The effect is seen as the training of the 

network stalls after a number of epochs. In order to deal with 

this, increasing the number of hidden layers, increasing the 

number of neurons in each layer, and choosing different types 

of transfer function were investigated. However, none of these 

methods showed a significant improvement in the behavior of 

the network. The other methods of solving the inverse 

problem are much less sensitive to the effect of nonlinearity.   

 

 

8 Effect of Regularization Parameter α 

TABLE II 

PARAMETER ON THE L2 NORM OF ERROR 

IN THE SOLUTION 

RPSO CRPSO 

7.577 E+4 7.611 E+4 

7.079 E+4 6.823 E+4 

7.064 E+4 6.685 E+4 

5.816 E+4 6.739 E+4 

5.999 E+4 5.822 E+4 
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TABLE III 

THE L2 NORM OF ERROR IN THE SOLUTION IN AN EXACT DOMAIN FOR 

DIFFERENT ALGORITHMS 

Method Linear Non-Linear 

Function Specification Method 1.81 E+2 2.14 E+2 

GA 7.62 E+2 7.71 E+2 

PSO 3.85 E+2 4.46 E+2 

RPSO 3.42 E+2 5.12 E+2 

CRPSO 3.17 E+2 4.26 E+2 

FMLP 9.90 E+2 3.57 E+4 

RBFN 5.35 E+2 2.76 E+4 

V. CONCLUSION 

In this paper, we introduced a gradient-based inverse solver 

to obtain the missing boundary conditions based on the 

readings of internal thermocouples. The results show that the 

method is very sensitive to measurement errors, and becomes 

unstable when small time steps are used. The artificial neural 

networks are shown to be capable of capturing the whole 

thermal history on the run-out table, but are not very effective 

in restoring the detailed behavior of the boundary conditions. 

Also, they behave poorly in nonlinear cases and where the 

boundary condition profile is different.   

 GA and PSO are more effective in finding a detailed 

representation of the time-varying boundary conditions, as 

well as in nonlinear cases. However, their convergence takes 

longer. A variation of the basic PSO, called CRPSO, showed 

the best performance among the three versions. Also, PSO 

proved to be effective in handling noisy data, especially when 

its performance parameters were tuned. An increase in the 

self-confidence parameter was also found to be effective, as it 

increased the global search capabilities of the algorithm. 

RPSO was the most effective variation in dealing with noise, 

closely followed by CRPSO. The latter variation is 

recommended for inverse heat conduction problems, as it 

combines the efficiency and effectiveness required by these 

problems. 
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