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Abstract—In this paper, the problem of steady laminar boundary
layer flow and heat transfer over a permeable exponentially
stretching/shrinking sheet with generalized slip velocity is
considered. The similarity transformations are used to transform the
governing nonlinear partial differential equations to a system of
nonlinear ordinary differential equations. The transformed equations
are then solved numerically using the bvp4c function in MATLAB.
Dual solutions are found for a certain range of the suction and
stretching/shrinking parameters. The effects of the suction parameter,
stretching/shrinking parameter, velocity slip parameter, critical shear
rate and Prandtl number on the skin friction and heat transfer
coefficients as well as the velocity and temperature profiles are
presented and discussed.
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I. INTRODUCTION

ISCOUS flow past a stretching surface has various and

enormous applications in technological and engineering
processes, such as roofing shingles, paper production, wire
drawing and others. Sakiadis [1] was the first to consider the
problem of boundary layer flow over a stretching sheet, which
was verified experimentally by [2], and then extended by [3]
for the two-dimensional problem.

The study of shrinking sheets was first performed by [4].
Later, [5] showed the existence of the multiple solutions for
steady hydrodynamic flow due to a permeable shrinking sheet
for a certain value of the suction parameter. On the other hand,
[6] was the first to investigate the flow over an exponentially
stretching continuous surface. Further, [7] studied the heat
transfer over an exponentially stretching continuous surface by
considering suction, while [8] studied the flow and heat
transfer over an exponentially shrinking sheet. Recently, [9]
investigated the effect of surface mass flux on the stagnation
point flow over a permeable exponentially
stretching/shrinking cylinder.
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All the studies mentioned above were done by considering
flow fields with no-slip boundary condition. However, such
condition is invalid in certain situations because slip may
occur on the boundary for particular fluids, such as emulsions
and foams. Beavers and Joseph [10] wrote an extensive
discussion regarding the slip boundary condition. Several
investigations regarding the slip boundary condition are found
in the literature (see [11]-[14]). On the other hand, [15]
introduced a general nonlinear relationship between the
amount of slip and the local shear rate, together with the
nonlinear boundary condition. Then, [16] investigated the
axisymmetric stagnation point flow of a viscous fluid over a
lubricated surface with a generalized slip boundary condition.

In this paper, we extend [8] by incorporating a general slip
boundary condition proposed in [15] to obtain numerical
solutions of the flow and heat transfer due to an exponentially
stretching/shrinking sheet. The partial differential equations
are transformed into ordinary differential equations by using
appropriate similarity variables, and then are solved
numerically. Dual solutions are found for some range of
parameters value. The effects of the governing parameters on
the skin friction and heat transfer coefficients as well as the
velocity and temperature profiles are presented and discussed.

II. GOVERNING EQUATIONS

Consider the steady boundary layer flow of a viscous and
incompressible fluid past a permeable stretching/shrinking
sheet with generalized slip velocity, where x and y are the
Cartesian coordinates measured along the sheet and normal to
it, respectively, the sheet being located at y =0. It is assumed
that the sheet is stretched/shrinked with the velocity
u,,(x)=Uyexp(x/ L), where L is a characteristic length of the

sheet, U, is the constant velocity characteristic of the sheet. It

is also assumed that the temperature of the sheet is
T,(x)=T, + Tyexp(x/2L), where 7, is the ambient
temperature and T, is a constant which measures the rate of
temperature increase along the sheet.

We also consider that the mass flux velocity is
v, (x) =voexp(x/2L), where v, is the constant mass flux
velocity with v, <0 for suction and v, >0 for injection or
withdrawal of the fluid, respectively. Under these conditions,
the basic boundary layer equations can be written in Cartesian
coordinates x and y as (see [8])
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Following [15], we assume that the generalized slip velocity
condition is given by

u()=a*(1-p*r) ", 4)

where u, is the tangential sheet velocity, «* corresponds to
Navier's constant slip length, g* is the reciprocal of some
critical shear rate and r,, is the shear stress at the surface of

the sheet. Thus, we assume that the boundary conditions of (1)
to (3) are

v, () =v,exp(x/ 2L), T,(0) =T, + Ty exp(x/ 2L),

—1/2 ¢ y=0,
”=ﬂerXp<x/L>+a*<x>(l-ﬂ*<x>a"] Qup =0 s
oy oy

u—0, T>T, a y—>o,

where » and v are the velocity components along the x and y
axes, respectively, 7 is the fluid temperature, v is the
kinematic viscosity, p is the fluid density, k is the fluid

thermal conductivity, ¢, is the specific heat at constant

P
pressure and A is the constant stretching/shrinking parameter
with 2>0 corresponding to the stretching sheet and 2<0
corresponding to the shrinking sheet.

III. SOLUTION

In order to solve (1) to (3) along with the boundary
conditions (5), we introduce the following variables:

w=(2U,vL) " exp(x/2L), () = TT_? ,

w o

(6)

1/2
[O
= exp(x/2L),
n y[va)] p( )

where w is the stream function with u=0y/dy and
v=—0w /ox. Thus, we have

u=u,(x) f'(), v=—(Uyv /20 exp(x/ L)[ S () + n.f' )}, (7)
Thus, we take

v, (x)=—(U,v/2L)exp(x/L)s, ®)

where s=-v,/(Uyv/ 21)"? is the mass flux parameter with

s>0 for suction and s<0 for injection or withdrawal of the

fluid. Equation (1) is automatically satisfied, while
substituting (6) into (2) and (3) yield the following ordinary
(similarity) equations:

S f =217 =0, ©
g +Pr(f 6 —[6)=0, (10)

subject to the boundary conditions

fO)=s, £1(0)=2+a(x)(1-Bx) £(0) " £(0), 60)=1
S —0,0(m) >0 as n—>ow,

(1

where primes denote differentiation with respect to 7. Further,
the three parameters appearing in (10) and (11) are Pr, a(x)
and p(x), and they denote the Prandtl number, the velocity

slip parameter and the critical shear rate, respectively, which
are defined as

Pr=252 )= | exp(x/20)a* (x),
K 2vL

a
Ax)=a, |

(12)

exp(3x/2L) B* ().

As suggested by [17], for (9) and (10) to have similarity
solutions, the quantities a(x) and £(x) must be constants and
not functions of the variable x as in (12). This condition can be
met if a*(x) and f*(x) are proportional to exp(-x/2L) and

exp(-3x/2L). We therefore assume
a*(x)=Aexp(-x/2L), B*(x)=Bexp(-3x/2L), (13)

where 4 and B are constants. With the introduction of (13)
into (12), we have

a a
= —2 4 = B. 14
¢ \/21/L - h a\jva (14)

Thus, the boundary conditions (11) become

fO)=s, fO)=2+a(1-4/"0)"["(0), 6(0)=1, (15)
f') >0, 6(n)—>0 as n—>o

The no-slip cases can be retrieved by setting a=/£=0, and

when 0<a<w and F#0, we have a case of general slip

condition.

We mention that with « and g defined by (14), the
solutions of (9) and (10) yield the similarity solutions.
However, with o and g defined by (13), the solutions
generated are the local similarity solutions. We notice that for
a=p=0, the problem (9)-(11) reduces to the boundary value
problems in [7] and [8].
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The quantities of physical interest in this problem are the
skin friction coefficient C, and the local Nusselt number

Nu,., which are defined as
L
Cr=—2—, Nug=— (16)
pi,(x) x(T,-T,)

where z,, and ¢,, are the skin friction or shear stress along

the surface of the sheet and the heat flux from the surface of
the sheet, respectively, and are given by

Ry (LN I U (17)
9y ), 0y ),

Using (6), (16) and (17), we get
(2Re))"”? C,=f"0), 2/ Re,)"? =-6(0), (18)
where Re, =u,(x) L/v is the local Reynolds number.

IV. RESULTS AND DISCUSSION

The nonlinear ordinary differential equations (9) and (10)
along with the boundary conditions (11) were solved
numerically using the “bvp4c” function from MATLAB (see
[18] and [19]) for some values of the governing parameters,
namely; suction parameter s, stretching/shrinking parameter 4,
velocity slip parameter a, critical shear rate f and Prandtl
number Pr. In order to validate the accuracy of the numerical
results obtained in this study, the values of the reduced skin
friction coefficient —f"(0) and the reduced local Nusselt
number -6'(0) for stretching and no-slip cases are compared
with those in [7]. The comparisons, which are shown in Table
I, are found to be in excellent agreement, and thus we are
confident that the present method is accurate.

TABLEI
COMPARISON OF THE VALUES OF —f"(0) AND —6'(0) WITH THOSE OF [7]

FOR DIFFERENT s WHEN A =1 (STRETCHING CASE), & = #=0 (NO SLIP)

AND Pr=0.72
Elbashbeshy [7] Present results
s -/"(0) -0'(0) -1"(0) -0'(0)
0.0 1.28181 0.767778 1.28182 0.767669
0.6 1.59824 1.014517 1.59824 1.014570

The variation of the reduced skin friction coefficient f”(0)
and the reduced local Nusselt number —&'(0) for the no slip
case (¢ =p=0) for some values of s and 1 are shown in Figs.
1 and 2. The values of f"(0) in Fig. 1 are positive when the
sheet is shrinking (4 <0) and declining to negative as the flow
past a stretching sheet (41>0). A positive sign for f"(0)

indicates that the fluid exerts a drag force on the sheet, while a
negative sign indicates otherwise. Both figures show that the
absolute values of 1. increase with the increase of suction

parameter s. Meanwhile, Figs. 3 and 4 display the variation of

f"(0) and -&'(0) with s for some values of critical shear rate
p. Here, the value of slip parameter o was kept constant at 5.
Both figures show the increasing f"(0) and -6'(0) as s
increases. On the other hand, the variation of f”"(0) and
-0'(0) with s for some values of slip parameter a are
displayed in Figs. 5 and 6, respectively. Both figures also
show the increasing f”(0) and —&'(0) as s increases. It can be
observed from Figs. 3-6 that the values of s, are decreasing

with the increase of slip parameter o and critical shear rate f.
Hence, slip parameter and critical shear rate widen the range
of s for which similarity solutions exist.

Figs. 1-6 show the existence of multiple (dual) solutions up
to a certain range of stretching/shrinking parameter 1 and mass
flux parameter s. The dual (first and second) solutions are
obtained by setting different initial guesses for the missing
values of f"(0) and —€'(0). The first and second solutions are
ilustrated with solid and dashed lines, respectively. When 4
and s equal to a certain value, say 1 =4, and s=s,, where A,
and s, are the critical values of 4 and s, respectively, there is
only one unique solution, and when A< 4. and s<s,, there is
no solution, beyond which the boundary layer separates from
the surface and the solution based upon the boundary-layer
approximations are not possible. We expect that the first
solution is stable and most physically relevant, while the
second solution is not (see [20]-[22]). Some values of s, are
presented in Table II for some values of a and f, which also
shows a decreasing value of s, as a and f increase.

TABLEII
VALUES OF s, FOR SEVERAL VALUES OF & AND £ WHEN A=-1, Pr=0.7

s Se
0 2.2666
0 1.6856
0.5 1.6433

5 1 1.1157
4 1.0421

10 5 0.8735
7 0.8496

Table III shows the numerical results (for both first and
second solutions) of f"(0) and —&'(0) for several values of

slip parameter o and critical shear rate f# when A=-1, s=3
and Pr=0.7. It can be seen that the values of f"(0) decrease
while the values of —€'(0) increase with the increase of o and

p. This shows that the introduction of the general slip
condition results in the reduction of the skin friction
coefficient and increment of the local Nusselt number.
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Fig. 4 Variation of —0'(0) with s for different # when o =5, A=—1,
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TABLE III
VALUES OF f"(0) AND —6'(0) FOR SEVERAL VALUES OF & AND f3
WHEN A=-1,Pr=0.7,s=3

First solution Second solution

First solution
Second solution

2

1
A

Fig. 2 Variation of —8'(0) with A for different s when Pr=0.7,

0.25
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s.=1.1157
s.= 1.1406
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T,
s.=1.0421 S
First solution
----- Second solution
0.5 1.5 2.5

35

Fig. 3 Variation of f"(0) with s for different f# when =35, 1=-1,

Pr=0.7

o JS"(0) -6'(0) JS"(0) -6'(0)
0 0 2.3908 1.7712 -0.9722 0.8483
1 0 0.7413 2.0263 -0.2749 0.8591
0.5 0.6411 2.0370 -0.2887 0.8584
2 0 0.4270 2.0591 -0.1583 0.8657
0.5 0.3892 2.0629 -0.1637 0.8654
1 0.3536 2.0664 -0.1691 0.8650
2 0.2912 2.0725 -0.1802 0.8644
0.36
0.26
0.16
0.06
-0.04
£7(0) 5.=0.9201
-0.14
-0.24
-0.34
-0.44 First solution
“““ Second solution
-0.54 r

Fig. 5 Variation of f"(0) with s for different « when f=1, A=-1,

1

Pr=0.7
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Fig. 7 Velocity profiles f'(n7) for different values of # when A=-1,
a=1s=3, Pr=0.7

Figs. 7 and 8 display the velocity and temperature profiles
f'(n) and 6(n), respectively, for different values of critical

shear rate . Both figures show very insignificant reduction in
boundary layer thickness as /8 increases from 0 to 0.5. These
profiles satisfy the far field boundary conditions (15)
asymptotically, thus supporting the validity of the numerical
results obtained and the existence of the dual solutions shown
in Figs 1-6.

V.CONCLUSION

A numerical study was performed for the problem of
boundary layer flow and heat transfer over a permeable
exponentially stretching/shrinking sheet with generalized slip
velocity. The problem was solved by using "bvp4c" function
in MATLAB. The numerical results obtained were compared
with the previous literature and the comparison is found to be
in good agreement. The boundary layer thickness was found to
be smaller with increasing critical shear rate. The boundary
layer thickness of the second (lower branch) solution appeared
to be larger than the first (upper branch) solution. The
introduction of the generalized slip boundary condition
resulted in the reduction of the local skin friction coefficient

and local Nusselt number as well as the boundary layer
thickness. Dual solutions were found for a certain range of the
mass flux and stretching/shrinking parameter.

1 . ‘ " " ' :
S First solution
=== Second solution

B(n)

Fig. 8 Temperature profiles &(77) for different values of # when
A==, a=1 s=3, Pr=0.7
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