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 
Abstract—In this paper, the problem of steady laminar boundary 

layer flow and heat transfer over a permeable exponentially 
stretching/shrinking sheet with generalized slip velocity is 
considered. The similarity transformations are used to transform the 
governing nonlinear partial differential equations to a system of 
nonlinear ordinary differential equations. The transformed equations 
are then solved numerically using the bvp4c function in MATLAB. 
Dual solutions are found for a certain range of the suction and 
stretching/shrinking parameters. The effects of the suction parameter, 
stretching/shrinking parameter, velocity slip parameter, critical shear 
rate and Prandtl number on the skin friction and heat transfer 
coefficients as well as the velocity and temperature profiles are 
presented and discussed. 
 

Keywords—Boundary Layer, Exponentially Stretching/Shrinking 
Sheet, Generalized Slip, Heat Transfer, Numerical Solutions. 

I. INTRODUCTION 

ISCOUS flow past a stretching surface has various and 
enormous applications in technological and engineering 

processes, such as roofing shingles, paper production, wire 
drawing and others. Sakiadis [1] was the first to consider the 
problem of boundary layer flow over a stretching sheet, which 
was verified experimentally by [2], and then extended by [3] 
for the two-dimensional problem. 

The study of shrinking sheets was first performed by [4]. 
Later, [5] showed the existence of the multiple solutions for 
steady hydrodynamic flow due to a permeable shrinking sheet 
for a certain value of the suction parameter. On the other hand, 
[6] was the first to investigate the flow over an exponentially 
stretching continuous surface. Further, [7] studied the heat 
transfer over an exponentially stretching continuous surface by 
considering suction, while [8] studied the flow and heat 
transfer over an exponentially shrinking sheet. Recently, [9] 
investigated the effect of surface mass flux on the stagnation 
point flow over a permeable exponentially 
stretching/shrinking cylinder. 
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All the studies mentioned above were done by considering 
flow fields with no-slip boundary condition. However, such 
condition is invalid in certain situations because slip may 
occur on the boundary for particular fluids, such as emulsions 
and foams. Beavers and Joseph [10] wrote an extensive 
discussion regarding the slip boundary condition. Several 
investigations regarding the slip boundary condition are found 
in the literature (see [11]-[14]). On the other hand, [15] 
introduced a general nonlinear relationship between the 
amount of slip and the local shear rate, together with the 
nonlinear boundary condition. Then, [16] investigated the 
axisymmetric stagnation point flow of a viscous fluid over a 
lubricated surface with a generalized slip boundary condition. 

In this paper, we extend [8] by incorporating a general slip 
boundary condition proposed in [15] to obtain numerical 
solutions of the flow and heat transfer due to an exponentially 
stretching/shrinking sheet. The partial differential equations 
are transformed into ordinary differential equations by using 
appropriate similarity variables, and then are solved 
numerically. Dual solutions are found for some range of 
parameters value. The effects of the governing parameters on 
the skin friction and heat transfer coefficients as well as the 
velocity and temperature profiles are presented and discussed. 

II. GOVERNING EQUATIONS 

Consider the steady boundary layer flow of a viscous and 
incompressible fluid past a permeable stretching/shrinking 
sheet with generalized slip velocity, where x and y are the 
Cartesian coordinates measured along the sheet and normal to 
it, respectively, the sheet being located at 0.y   It is assumed 
that the sheet is stretched/shrinked with the velocity 

0( ) exp( / ),wu x U x L  where L is a characteristic length of the 

sheet, 0U  is the constant velocity characteristic of the sheet. It 

is also assumed that the temperature of the sheet is 

0( ) exp ( / 2 ),wT x T T x L   where T  is the ambient 

temperature and 0T  is a constant which measures the rate of 

temperature increase along the sheet. 
We also consider that the mass flux velocity is 

0( ) exp( / 2 ),wv x v x L  where 0v  is the constant mass flux 

velocity with 0 0v   for suction and 0 0v   for injection or 

withdrawal of the fluid, respectively. Under these conditions, 
the basic boundary layer equations can be written in Cartesian 
coordinates x and y as (see [8]) 
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Following [15], we assume that the generalized slip velocity 

condition is given by 
 

1/ 2( ) *(1 * ) ,t w wu x             (4) 

 
where tu  is the tangential sheet velocity,    corresponds to 

Navier's constant slip length,    is the reciprocal of some 

critical shear rate and w  is the shear stress at the surface of 

the sheet. Thus, we assume that the boundary conditions of (1) 
to (3) are 
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(5) 

 
where u  and v  are the velocity components along the x and y 
axes, respectively, T is the fluid temperature,   is the 
kinematic viscosity,   is the fluid density, k is the fluid 

thermal conductivity, pc  is the specific heat at constant 

pressure and   is the constant stretching/shrinking parameter 
with 0   corresponding to the stretching sheet and 0   
corresponding to the shrinking sheet. 

III. SOLUTION 

In order to solve (1) to (3) along with the boundary 
conditions (5), we introduce the following variables: 
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where   is the stream function with /u y    and 

/ .v x    Thus, we have 
 

1/2
0( ) ( ), ( / 2 ) exp( / ) ( ) ( ) ,wu u x f v U L x L f f             (7) 

 
Thus, we take 
 

1/ 2
0( ) ( / 2 ) exp( / ) ,wv x U L x L s                         (8) 

 

where 1/2
0 0/ ( / 2 )s v U L   is the mass flux parameter with 

0s   for suction and 0s   for injection or withdrawal of the 

fluid. Equation (1) is automatically satisfied, while 
substituting (6) into (2) and (3) yield the following ordinary 
(similarity) equations: 
 

22 0,f f f f              (9) 

              
 Pr 0,f f               (10) 

 
subject to the boundary conditions 
 

  1/2
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where primes denote differentiation with respect to .  Further, 

the three parameters appearing in (10) and (11) are Pr, ( )x  

and ( ),x  and they denote the Prandtl number, the velocity 
slip parameter and the critical shear rate, respectively, which 
are defined as 
 

Pr , ( ) exp( / 2 ) *( ),
2

( ) exp(3 / 2 ) *( ).
2
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a
x a x L x
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      (12) 

 
As suggested by [17], for (9) and (10) to have similarity 

solutions, the quantities ( )x  and ( )x  must be constants and 
not functions of the variable x as in (12). This condition can be 
met if ( )x   and ( )x   are proportional to exp ( / 2 )x L  and 

exp ( 3 / 2 ).x L  We therefore assume 
 

* ( ) exp ( / 2 ), * ( ) exp ( 3 / 2 ),x A x L x B x L            (13) 
 
where A and B are constants. With the introduction of (13) 
into (12), we have 
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Thus, the boundary conditions (11) become 
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The no-slip cases can be retrieved by setting 0,    and 

when 0     and 0,   we have a case of general slip 
condition.  

We mention that with   and   defined by (14), the 
solutions of (9) and (10) yield the similarity solutions. 
However, with   and   defined by (13), the solutions 

generated are the local similarity solutions. We notice that for 
0,    the problem (9)-(11) reduces to the boundary value 

problems in [7] and [8]. 
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The quantities of physical interest in this problem are the 
skin friction coefficient fC  and the local Nusselt number 

,xNu  which are defined as 
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where w  and wq  are the skin friction or shear stress along 

the surface of the sheet and the heat flux from the surface of 
the sheet, respectively, and are given by 
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Using (6), (16) and (17), we get 
 

1/2 1/2(2Re ) (0), (2 / Re ) (0),x f xC f                  (18) 

 
where Re ( ) /x wu x L   is the local Reynolds number. 

IV. RESULTS AND DISCUSSION 

The nonlinear ordinary differential equations (9) and (10) 
along with the boundary conditions (11) were solved 
numerically using the “bvp4c” function from MATLAB (see 
[18] and [19]) for some values of the governing parameters, 
namely; suction parameter s, stretching/shrinking parameter λ, 
velocity slip parameter α, critical shear rate β and Prandtl 
number Pr. In order to validate the accuracy of the numerical 
results obtained in this study, the values of the reduced skin 
friction coefficient (0)f   and the reduced local Nusselt 

number (0)  for stretching and no-slip cases are compared 

with those in [7]. The comparisons, which are shown in Table 
I, are found to be in excellent agreement, and thus we are 
confident that the present method is accurate. 

 
TABLE I 

COMPARISON OF THE VALUES OF (0)f   AND (0)   WITH THOSE OF [7] 

FOR DIFFERENT s  WHEN 1   (STRETCHING CASE), 0    (NO SLIP) 

AND Pr 0.72  

Elbashbeshy [7]  Present results 

s (0)f    (0)   (0)f    (0)   

0.0 1.28181 0.767778 1.28182 0.767669 

0.6 1.59824 1.014517 1.59824 1.014570 

 
The variation of the reduced skin friction coefficient (0)f   

and the reduced local Nusselt number (0)  for the no slip 

case ( 0)    for some values of s and λ are shown in Figs. 

1 and 2. The values of (0)f   in Fig. 1 are positive when the 

sheet is shrinking ( 0)   and declining to negative as the flow 

past a stretching sheet ( 0).   A positive sign for (0)f   
indicates that the fluid exerts a drag force on the sheet, while a 
negative sign indicates otherwise. Both figures show that the 
absolute values of c  increase with the increase of suction 

parameter s. Meanwhile, Figs. 3 and 4 display the variation of 

(0)f   and (0)  with s for some values of critical shear rate 
β. Here, the value of slip parameter α was kept constant at 5. 
Both figures show the increasing (0)f   and (0)  as s 

increases. On the other hand, the variation of (0)f   and 

(0)  with s for some values of slip parameter α are 
displayed in Figs. 5 and 6, respectively. Both figures also 
show the increasing (0)f   and (0)  as s increases. It can be 

observed from Figs. 3-6 that the values of cs  are decreasing 

with the increase of slip parameter α and critical shear rate β. 
Hence, slip parameter and critical shear rate widen the range 
of s for which similarity solutions exist. 

Figs. 1-6 show the existence of multiple (dual) solutions up 
to a certain range of stretching/shrinking parameter λ and mass 
flux parameter s. The dual (first and second) solutions are 
obtained by setting different initial guesses for the missing 
values of (0)f   and (0).  The first and second solutions are 
ilustrated with solid and dashed lines, respectively. When λ 
and s equal to a certain value, say c   and ,cs s  where c  

and cs  are the critical values of λ and s, respectively, there is 

only one unique solution, and when c   and ,cs s  there is 

no solution, beyond which the boundary layer separates from 
the surface and the solution based upon the boundary-layer 
approximations are not possible. We expect that the first 
solution is stable and most physically relevant, while the 
second solution is not (see [20]-[22]). Some values of cs  are 

presented in Table II for some values of α and β, which also 
shows a decreasing value of cs  as α and β increase. 

 
TABLE II 

VALUES OF cs  FOR SEVERAL VALUES OF   AND   WHEN 1,   Pr 0.7   

α β cs   

0 0 2.2666 

1 0 1.6856 

 0.5 1.6433 

5 1 1.1157 

 4 1.0421 

10 5 0.8735 

 7 0.8496 

 
Table III shows the numerical results (for both first and 

second solutions) of (0)f   and (0)  for several values of 

slip parameter α and critical shear rate β when 1,   3s   

and Pr 0.7.  It can be seen that the values of (0)f   decrease 

while the values of (0)  increase with the increase of α and 

β. This shows that the introduction of the general slip 
condition results in the reduction of the skin friction 
coefficient and increment of the local Nusselt number.  
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Fig. 1 Variation of (0)f   with λ for different s when Pr 0.7,  

0    (no slip)  

 

 

Fig. 2 Variation of (0)  with λ for different s when Pr 0.7,  

0    (no slip)  

 

 

Fig. 3 Variation of (0)f   with s for different β when 5,   1,  
Pr 0.7  

 

 

Fig. 4 Variation of (0)  with s for different β when 5,  1,  
Pr 0.7  

 
TABLE III 

VALUES OF (0)f   AND (0)   FOR SEVERAL VALUES OF   AND   

WHEN 1, Pr 0.7, 3s      

  First solution Second solution 

α β (0)f    (0)   (0)f    (0)   

0 0 2.3908 1.7712 -0.9722 0.8483 

1 0 0.7413 2.0263 -0.2749 0.8591 

0.5 0.6411 2.0370 -0.2887 0.8584 

2 0 0.4270 2.0591 -0.1583 0.8657 

0.5 0.3892 2.0629 -0.1637 0.8654 

1 0.3536 2.0664 -0.1691 0.8650 

2 0.2912 2.0725 -0.1802 0.8644 

 

 

Fig. 5 Variation of (0)f   with s for different   when 1,  1,  
Pr 0.7  
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