
International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

510

A Combined Neural Network Approach to Soccer
Player Prediction

Wenbin Zhang, Hantian Wu, Jian Tang

Abstract—An artificial neural network is a mathematical model
inspired by biological neural networks. There are several kinds of
neural networks and they are widely used in many areas, such as:
prediction, detection, and classification. Meanwhile, in day to day life,
people always have to make many difficult decisions. For example,
the coach of a soccer club has to decide which offensive player
to be selected to play in a certain game. This work describes a
novel Neural Network using a combination of the General Regression
Neural Network and the Probabilistic Neural Networks to help a
soccer coach make an informed decision.

Keywords—General Regression Neural Network, Probabilistic

I. INTRODUCTION

ANeural network consists of an interconnected group of
artificial neurons, and it processes information using a

connectionist approach to do computation. Neural networks
are designed for modeling complex relationships between
inputs and outputs[1], and they have been a fertile field of
research and application. Rani and Mahip give an excellent
review and many examples of neural networks[2]. It has
become commonplace for a soccer team with more and more
staffs to acquire all kinds of players’ information to help
coach determines the best lineup. The coach has to consider
many factors to make this decision, and it is not always easy
to make a proper decision that the selected player has the
highest probability to perform better in all candidate offensive
players. However, to my best knowledge, there is no work
for player selection in real soccer teams to date, although in
the certain soccer areas, neural networks are given a wide
range of applications, including robot soccer[3], soccer match
result prediction[4], soccer videos classification[5] and so on.
Inspired by this practical need and the function of neural
network, we use the idea of neural network to build a predictor
for football player selection. More specifically, we combine
the General Regression Neural Network and the Probabilistic
Neural Networks to build this predictor. The player selected
should have the largest probability to perform on a higher level
in a certain position. It is anticipated that, given a particular
game, it will be helpful to select players for different positions
according to a new approach.

Wenbin Zhang is with the Department of Computer Science, Memorial

Hantian Wu is with the Department of Computer Science, Illinois Institute
of Technology

Jian Tang is with the Department of Computer Science, Memorial
University of Newfoundland

Fig. 1. The structure of Probabilistic Neural Network

II. RELATED WORK

A. Probabilistic Neural Network

The Probabilistic Neural Network(PNN) is a feed forward
neural network, which was firstly introduced by D.F. Specht in
the early 1990s. The PNN is a multilayer feed-forward network
with four layers. The structure of PNN is shown in Fig. 1.

Each neuron in the input layer represents an input variable,
and it is connected with every neuron in the hidden layer.
The hidden layer contains one neuron for each sample in the
training data set. It stores the values of the input variables for
the case along with the sample value[1], [6]. A hidden neuron
computes how similar (the Euclidean distance) the input is
to the corresponding training sample. The closer it is, the
more likely it is to return a higher value which represents that
this input is more likely belonging to the same class with the
training sample. Each node in this layer only connects with the
node representing the corresponding class in the summation
layer. Each node in summation layer represents one class
in the classification, and adds the values received from the
hidden layer. The output layer compares the probabilities for
each target class accumulated in the pattern layer and uses the
largest probability to predict the target class[7], [8].

If the probability density function(PDF) of each of the
populations(classes) is known, then an unknown input, X,
belongs to class i if: hicifi(x) > hjcjfj(x), j �= i.
Here the f(x) is the probability density function, h is the
prior probability, which is the probability of an unknown
sample being drawn from a particular population, and c is
the misclassification cost, indicating the cost of incorrectly

Neural Networks, Neural function.

wenbin.zhang@mun.ca).
University of Newfoundland, St. John’s, NL, A1B 3X5 Canada (e-mail:

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

511

classifying an unknown input[9]. In this work, we do not take
into account the prior probability or the misclassification cost.
Whats more, it is not practical to find out the exact probability
density function, so the reasonable solution is estimating it
from the training sample. For a single sample in the training
set, the PDF can be estimated as 1

σW (x−xk

σ) , where the
x is the input, W is the weighting function, xk is the k-
th sample and σ is the smoothing parameter. The PDF for
a single class becomes 1

nσΣ
n
k=1W (x−xk

σ)[10]. The estimated
PDF approaches the true PDF as the training set size increases,
as long as the true PDF is smooth. It is important to select a
proper weighting function, which should have the following
properties: it should return a large value when the distance
between unknown input and the training sample is small; and
the returned value rapidly decreases to zero as the distance
increases[6], [11]. Commonly the Gaussian function is a good
choice because it behaves well, is easily computed and is
not related to any assumption about a normal distribution[12].
Then the estimated PDF function for each class becomes:

gi(x) =
1

(2π)p/2σpni
Σni

k=1e
− ‖x−xik‖2

2σ2 (1)

For the PNN, the training procedure is equal to build the
network and store the information of samples in the hidden
layer. In other words, after building the neural network, there is
no training procedure. Therefore, it is quite fast. Besides this,
the training samples can be added or removed easily without
extensive retraining. Another important fact is that a proper
smoothing parameter σ is required. It can be determined by
an educated guess based on knowledge of the data or estimated
by a heuristic technique.

B. General Regression Neural Network

The General Regression Neural Network(GRNN) was also
introduced by D.F. Specht in the early 1990s and it is
based on probability as well. GRNN is very similar to PNN,
especially for the structure. However, the GRNN is designed
for regression, while PNN is designed for classification. Given
the training data, the GRNN can reconstruct the underlying
function, f(x). The architecture of GRNN is very similar to
the architecture of PNN, except the neuron in the hidden layer
is connected with every neuron in the summation layer and the
edges that connect the hidden layer and summation layer are
assigned weights[13], [14], [15], as shown in Fig. 2.

As a reasonable estimate of an unknown regression function
f(x), relying on a prior belief of its smoothness, one may
take a mean of observations from a neighborhood of the
point x. This approach is successful if the local average
is confined to observations in a small neighborhood(i.e. a
receptive field) of the point x as observations corresponding
to points away from x will generally have different mean
values[16]. More precisely, f(x) is equal to the conditional
mean of z given x. Using the formula for the expectation
of a random variable, it can be written: f(x) = E[z|x] =∫ +∞
−∞ zpz(z|x)dz where p(z|x) is the conditional probability

density function of z given x. From probability theory, it is
known that: pz(z|x) = px,z(x,z)

px(x)
, then the formula comes to:

Fig. 2. The structure of General Regression Neural Network

f(x) = E[z|x] =
∫ +∞
−∞ z(x)p(x|z)dz
∫ +∞
−∞ p(x|z)dz

, where p(x, z) is the joint

distribution function[13].
We can use either parametric or nonparametric models to

find the joint distribution function from the training data. The
latter one is always a preferred choice because it estimates
the density directly from the data without making any
parametric assumptions about the underlying distribution. The
Parzen-Rosenblatt density estimator of joint PDF is adopted,
where p(x, z) in the joint input-output space is defined as:
px,z(x, z) = 1

σp+1N

∑N
i=1 K(x−xi

σ)K(z−zi
σ). Here the K is

kernel function, always, Gaussian function is a good choice for
the kernel function[14]. After applying the Gaussian function,
we can get (2) and (3). Then assessing the two indicated
integrations and using

∫ −∞
+∞ ze−z2

dz = 0, we yield(4).

p(x, z) =
1

(2π)3/2
1

N
ΣN

n=1

1

σ2
x,nσz

exp{−D2
x,n

2σ2
x,n

− D2
z,n

2σ2
z

},
(2)

f(x) =
Σn

i=1 exp[− (x−xi)
T (x−xi)

2σ2]
∫ +∞
−∞ z exp[− (z−zi)

2

2σ2]dz

Σn
i=1 exp[− (x−xi)T (x−xi)

2σ2]
∫ +∞
−∞ exp[− (z−zi)2

2σ2]dz
,

(3)

f(x) =
Σn

i=1zi exp[− (x−xi)
T (x−xi)

2σ2]

Σn
i=1 exp[− (x−xi)T (x−xi)

2σ2]
. (4)

Formula (4) is a weighted sum over all the training patterns.
Each training pattern is weighted exponentially according to
its Euclidean distance to the unknown pattern x and also
according to the smoothing factors σ. Note that the use of
the normalized Gaussian function does not imply any normal
assumption about the distribution of the data in the feature
space[15]. The Gaussian function is used just for the reason
that it satisfies the requirements about the properties of the
kernel function. The σ is the smoothing factor, which leads to
different estimation results: if σ is too small, the result will
become over-fitting; if too large, the estimation will be over
smoothing.

The final formula is mapped into the GRNN. Each node in
the hidden layer represents a training pattern. The summation

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

512

layer includes two nodes: the first node sums all the outputs
of the hidden layer and evaluates the numerator of the final
formula, and the second unit evaluates the denominator of the
final formula. Each unit in the hidden layer is connected to
each of the two nodes in the summation layer. The weights
of the connection between the node i in the hidden layer and
the first unit of the summation layer is equal to yi, the target
value. The i weight of the connection between any node i in
the hidden layer and the second node in the summation layer
is equal to unity. The output node merely divides the two
outputs of the summation layer to yield the predicted value
of the dependent feature[17], [18]. The advantages of GRNN
are fast training and the ability to easily add or delete training
samples.

III. A COMBINED APPROACH

A. Methodology

Considering the similar architecture of PNN and GRNN
as well as fast training and re-training features of both
neural networks, we are going to construct a neural network
by combining PNN and GRNN to predict soccer players’
performance value. Applications using the combination of
neural networks have been discussed in some literatures[19],
[20], [21].

In reality, many factors will affect a game. We choose
some key and useful factors: time, opponent, the opponent’s
playing style, city, weather, difficulty and player form[22]. The
target value is the players performance level. Other factors can
be easily included by adding corresponding input nodes. As
there are several candidate players, we need to calculate the
most probable performance for every player, and choose the
maximum one as the final choice. This results in one more
layer to compare the estimated performances of players. The
GRNN part will use the time information and performance
information (target value) in historical data to estimate the
underlying function between time input and performance
value. When an input game comes, the GRNN will use the
input time factor and estimate the target performance value
for each candidate player. Note that each candidate player
has a different underlying function. Other factors will be
used by the PNN. The target value–performance will be
discretized into several performance classes. In the PNN, the
Gaussian function is still used but not enough because there are
several factors that cannot be digitized and applied in Gaussian
function, such as: city, opponent. How to solve this problem?
The idea of PNN is if input is closer, namely more similar to
one training sample, it has higher probability of belonging
to the corresponding class. For example, if there are two
samples for player1: (ATM, offensive, sunny, home, 9.0)
and (Betis, defensive, cloudy, away, 7.0), where the last
value is the target performance level, assuming each
variable has the same weight, then when an input
(Betis, defensive, sunny, away) comes, using the idea of
PNN, the node representing the second sample will return a
higher value than the first one. So we design our own neural
function for our PNN which ensures that return a large value
when the distance between unknown input and the training

Fig. 3. The structure of combined Neural Network

sample is small; the return value rapidly decreases to zero as
the distance increases. Using this idea, in our neural function,
if one variable in the city is the same, it will add a value to
its output, if not, it will not. For the numeric variables (game
difficulty and player form), the Gaussian function still applies.
In this way, our neural function formula becomes:

SUM = 0.15 ∗ (opponent) + 0.15 ∗ (style)
+ 0.1 ∗ (city) + 0.05 ∗ (weather)
+ 0.55 ∗Gaussian(difficulty, playerform).

(5)

Here, if the input of opponent is same as the sample, the
opponent value will be 1, otherwise the value will become
0. Other factors work in the same way. Then, for one input,
the GRNN and PNN will return estimated performance values
for each candidate offensive player. The added layer will add
these two estimated values for each candidate and send to the
output. The output layer will do comparison between players,
then output the selection and estimated performance for this
player.

B. Structure

Fig. 3 is a schematic diagram. The first layer is the input
layer. The number of the nodes in this layer is equal to the
number of factors. For the hidden layer, each node stores the
information of the sample and it can be considered as there are
two neural functions: one uses time and historic target value to
do regression, another uses other factors to do classification.
In the summation layer1, there are two parts: the node in the
left part sums the values calculated by regression function in
hidden layer for each candidate; the node in the right part
sums the values calculated by classification function in hidden
layer for each candidate. Then the summation 2 layer does
division for regression and comparison for the classification.
This layer calculates the estimated performance and the most
probable performance for each player. Finally, the output layer
can make the selection and output the average of the sum of

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

513

Fig. 4. Selecting player for Real Madrid when against AC Milan

Fig. 5. Selecting player for Real Madrid when against Mancity

estimated performance and the most probable performance as
the final performance. The smoothing factors for PNN and
GRNN we use are 1.1 and 1.85 respectively.

IV. EMPIRICAL STUDY

One predicting process based on an UEFA Champions
League for Real Madrid to select player when against AC
Milan on November, 4th, 2011 is presented in figure 4. Time
factor uses week as unit time; the name of the opponent along
with the style of this opponent are required; the place factor
is either home or away; difficulty factor range from 0 to 10
with higher value means more difficulty; then are the weather
and the form of the player which also range from 0-10, and
higher values reflects better status. The performance is the
target value, from 0-10, and still higher value means better
performance.

After entering the factors for a certain match, it will return
the recommended player and estimated performance. The
selected player Higuain scored the first goal for Real Madrid
and was rated 8 out of 10 for this game by UEFA.com[22].
Figure 5 is another test result for a different Real Madrid’s
game against Mancity on September, 18th, 2012. The selected
player Ronaldo striked in the final seconds earned Real Madrid
3: 2 against Mancity and scored 9 out of 10 for this game
by UEFA.com[23]. After the predicting process, the user can
either add or delete the training samples.

The above experimental results suggest that predictor is
practical for helping soccer coach to determine the most
suitable player after taking different factors into consideration.

V. CONCLUSION AND DISCUSSION

In this paper, we propose a novel Neural Network which
combines the General Regression Neural Network and the
Probabilistic Neural Networks to help a soccer coach select
players who have the largest probability to perform on a higher
level. The novel Neural Network is implemented and achieves
simplicity and promising finite sample performance in our
empirical studies. Our future work will pay more attention
to the selection of smoothing factors for neural functions in a
more technical method for this problem. Also, we will extend
this Neural Network to be applicable to other matters in daily
life.

REFERENCES

[1] D.F.Specht: Probabilistic Neural Networks. In: Neural Network, Vol. 3,
pp. 109-118 (1990)

[2] Rani Pagariya, Mahip Bartere: Review Paper on Artificial Neural Net-
works. In: International Journal of Advanced Research in Computer
Science, Volume 4 (2013)

[3] Jolly, K.G, Ravindran, K.P, Vijayakumar, R.: Intelligent decision making
in multi-agent robot soccer system through compounded artificial neural
networks. In: Robotics and Autonomous Systems, Volume 55, Issue 7
(2007)

[4] Heuer Andreas, Rubner Oliver: Towards the perfect prediction of soccer
matches. In: Physics.data-an (2012)

[5] Ballan. L, Bazzica. A, Bertini, M: Deep networks for audio event
classification in soccer videos. In: IEEE International Conference on
Multimedia and Expo (2009)

[6] Shaffer, R. E.; Rose-Pehrsson, S. L.: Improved Probabilistic Neural
Network Algorithm for Chemical Sensor Array. In: Pattern Recognition.
Anal. Chem., 71, 4263-4271 (1999)

[7] D.F.Specht: Probabilistic neural networks for classification, or associative
memory. In: IEEE international conference on neural networks, San
Diego, vol 1, pp 525535 (1988)

[8] D.F.Specht, Shapiro PD: Generalization accuracy of probabilistic neural
networks compared with back-propagation networks. In: International
joint conference on neural networks Seattle, vol 1, pp 887892 (1991)

[9] Cacoullos, T.: Estimation of a multivariate density. In: Annuals of the
Institute of Statistical Mathematics, 18(2): 179-189 (1966)

[10] D.F.Specht: Enhancements to probabilistic neural networks. In:
International joint conference on neural networks Baltimore, vol 1, pp
761768 (1992)

[11] Adeli H, Panakkat A: A probabilistic neural network for earthquake
magnitude prediction. In: Neural Network 22(7): 10181024 (2009)

[12] J. Tetteh, A. Beezer, J. Orchard, C. Tortoe: Application of Radial
Basis Function Network with a Gaussian Function of Artificial Neural
Networks in Osmo-dehydration of Plant Materials. In: Journal of Artificial
Intelligence, Volume 4 (2011)

[13] D.F.Specht: A general Regression Neural Network. In: IEEE Transac-
tions on Neural Networks, Vol 2, pp 568576 (1991)

[14] Marchctte, D., Priebe, C.: An application of neural networks to a data
fusion problem. In: TriServiceData Fusion Symposium 1, 23tl-235 (1987)

[15] Cichocki A and Zdunek R: Multilayer nonnegative matrix factorization
using projected gradient approaches. In: International Journal of Neural
Systems 17(6): 431446 (2007)

[16] Mikhail Kanevski: Machine Learning Algorithms: Theory, Applications
and Software Tools (2009)

[17] Oscar TP.: Predictive model for survival and growth of Salmonella
Typhimurium DT104 on chicken skin during temperature abuse. In:
Poultry science, 72:30414 (2009)

[18] I-Cheng Yeh, Kuan-Cheng Lin: Supervised Learning Probabilistic
Neural Networks. In: Neural Processing Letters, Volume 34, Issue 2
(2011)

[19] Yangpo Song, Xiaoqi Peng: Modeling method using combined artificial
neural network. In: International Journal of Computational Intelligence
and Applications, Volume 10, Issue 2 (2011)

[20] Raghu P.P, Poongodi R, Yegnanarayana B: A combined neural network
approach for texture classification. In: Neural Networks, Volume 8, Issue
6 (1995)

[21] Chang Wei-Der: Recurrent neural network modeling combined with
bilinear model structure. In: Neural Computing and Applications, Volume
24, Issue 3 (2014)

International Journal of Information, Control and Computer Sciences

ISSN: 2517-9942

Vol:9, No:2, 2015

514

[22] Juergen Perl: Neural Network-Based Process Analysis in Sport Gaming
and Simulations: Concepts, Methodologies, Tools and Applications
(2011)

[23] The official website for European football
http://www.uefa.com/uefachampionsleague/history/index.html

Wenbin Zhang is currently doing his graduate study at the Memorial
University of Newfoundland with degrees in Computer Science. His interests
lie in the fields of machine learning with specialization in designing variable
selection algorithm in mixture cure model.

Hantian Wu is currently pursuing his master degree of Computer Science
at Illinois Institute of Technology. His interests are in the fields of machine
learning and mobile application developments.

Jian Tang is currently a professor of Department of Computer Science at the
Memorial University in Canada. His research interests cover various topics
in the broad area of data mining, database systems, distributed computing,
workflow management, E-commerce, XML

