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Abstract—Applications of the Hausdorff space and its mappings
into tangent spaces are outlined, including their fractal dimensions
and self-similarities. The paper details this theory set up and further
describes virtualizations and atomization of manufacturing processes.
It demonstrates novel concurrency principles that will guide
manufacturing processes and resources configurations. Moreover,
varying levels of details may be produced by up folding and breaking
down of newly introduced generic models. This choice of layered
generic models for units and systems aspects along specific aspects
allows research work in parallel to other disciplines with the same
focus on all levels of detail. More credit and easier access are granted
to outside disciplines for enriching manufacturing grounds. Specific
mappings and the layers give hints for chances for interdisciplinary
outcomes and may highlight more details for interoperability
standards, as already worked on the international level. The new rules
are described, which require additional properties concerning all
involved entities for defining distributed decision cycles, again on the
base of self-similarity. All properties are further detailed and assigned
to a maturity scale, eventually displaying the smartness maturity of a
total shopfloor or a factory. The paper contributes to the intensive
ongoing discussion in the field of intelligent distributed
manufacturing and promotes solid concepts for implementations of
Cyber Physical Systems and the Internet of Things into
manufacturing industry, like industry 4.0, as discussed in German-
speaking countries.

Keywords—Autonomous unit, Networkability, Smart
manufacturing unit, Virtualization.

I. INTRODUCTION

EWLY available ICT devices offer so far unseen
opportunities in manufacturing. Technologies for

information processing and communication are about to
embrace all important manufacturing areas. Real production
increasingly melts with the digital production world [1]. With
novel information technology, smarter equipment and
networked units, many factories gradually turn into large
computing units sending data across and outside companies
[2]. Developments in ICT will totally reshape manufacturing
as machines, and objects and equipment on the shopfloors will
become smart and online, eventually resulting in smart
distributed manufacturing [1]. Virtualizations and models of
manufacturing units will interact exactly as interactions with
the units [6]. Context aware equipment, autonomous orders,
scalable machine capacity or networkable manufacturing units
will be the terminology to get familiar with in manufacturing
and in manufacturing management [7]. Such newly appearing
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smart abilities with impact on network behavior, collaboration
procedures and human resource development make
decentralized distributed manufacturing a preferred model to
produce [5]. In order to capture the full context, the
accounting theory behind is identified as the mathematical
topology. This topological framework enables to model the
entire manufacturing network context coherently [10].

Numerous approaches for computerizing manufacturing
units and processes propagate powerful and fascinating
services, ready for implementation [3]. The appearance of
novel devices, able to be positioned, to be tracked, and to be
identified on one hand, also capable to communicate, to act, to
negotiate and even to decide on the other is gaining influence
on everything that concerns manufacturing [4]. As
manufacturing increasingly supports the processes by means
of virtualized smart resources, Distributed Manufacturing
(DM) [5] irreversibly extends from automated factory floors
onto manufacturing enterprises in total. Advances on the fields
of embedded systems, and cyber physical systems [6]
additionally accelerate this shift. Important developments are
also telecommunication driven and discussed under different
chapters, as Internet of things [7], Ubiquitous Computing [8],
Smart Objects [9] or comparable terminology.
Decentralization and atomization of processes, units and
procedures and their virtualizations are in trend. Some
principles that had been found for DM [10] now reappear for
manufacturing in total, so most upcoming set ups can be
mirrored to DM experiences and respective findings.

As various communities from different disciplines outside
of manufacturing are intensively working on new services and
novel devices, the most important developments are
introduced in accordance with international, governmental or
industrial institutions (e.g. NIST, 2011; Open China ICT,
2013; VDI/VDE, 2013). The proposed virtualizations are
largely based on information models. In order to obtain closed
and coherent descriptions of networks, topological spaces are
introduced as a base for further discussions. The space
construct, as outlined, reduces down to the essentials on one
hand; on the other hand it is powerful enough to capture all
relevant aspects of networked manufacturing. The possibility
of smoothly attaching model worlds to the nodes of the space
literally imposes interpretations of cyber physical production
and smart objects. The resulting set of loosely coupled,
autonomously acting manufacturing units are evidently subject
to principles and modes of complex structures that are known
from advanced mechatronic systems and DM set ups [10]
already. In this context, procedures for controlling the
behavior of units and the generalized principle of
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may be composed more detailed as a configured process
network as results of agents interactions.

The introduced aspect layers of network ability do not only
allow describing the units and prepare setups for interrelations.
The layers also allow narrowing down a number of properties
and smart manufacturing units are expected to exhibit in DM.
These properties will not have to be newly engineered; it
suffices to select and specify from the already existing
devices.

B. Acceptance of Existing Boundaries and Network
Participation

Each smart manufacturing unit has to carry its digital
presence, uniquely identified in the digital world, which
includes ID and network interface address or other
application-specific high level naming. Existing boundaries of
the DM network must be accepted. This also affects the
hierarchies of the (traditional) manufacturing systems in ERP,
MES and shopfloor terms with clear responsibilities for
factory equipment such as machines or factory sections. Smart
manufacturing units should always retain its original
functionalities and appearances, and maintenance should
extend their physical usages so it is mandatory to decouple the
augmented features from the original unit features. Smart units
must support its original functions and properties, even if the
augmented electronic cyber part is out of order.

Moreover, the requiring interactions with smart units should
be identical to interactions with the original object. Mental
models, cast into emulation that keep the instrumentation
implicit (without additional interactions), will make humans
commonly experience that they are dealing with the physical
real objects rather than their digital abstract objects.

C.Context Awareness
A smart unit is augmented with various technologies, thus it

is expected that a smart unit is able of knowing its operational
and situational states and should be able to describe itself. This
awareness might be also be provided by a secondary
infrastructure e.g. cloud.

Awareness is generally defined as the ability to provide
services with full awareness of the current execution
environment. As any information that can be used to
characterize the situation of entities (i.e. a person, place or
object) that are considered relevant to the interaction,
including the user and the applications themselves.

Aware units offer functionalities for gathering context data
and adapting behaviour accordingly, aware systems, as cyber-
physical systems, are by nature concurrent, as establishing and
running processes are intrinsically concurrent and the coupling
with computing shows concurrent composition of computing
processes with the physical ones by definition.

Using sensors and actuators, once recognised gaps and
deviations may be stated and reconfigurations and adaptations
may be initiated for determining current states of the models
and vice versa, displayed effects may induce actions in the real
world. Manufacturing information, which has been handed out
as specs, work sheets, drawings, or schedule information, are

now instantly and very precisely available enabling prompt
identification, processing and communication of between
actual and planned states and parameters.

To represent the current network states in a model system as
well as to bring in modifications (e.g. for optimisation) from
the model world into the real world, the different “network
worlds” may be stored as models and gradually harmonized,
so each action in the real manufacturing world may have an
effect on the models and vice versa result in reactions towards
the environment. Adequate set ups may be characterised as:
(1) A set of models that allows us to properly represent the

context information at conceptual level. These models are
capable to describe information related to objective
fulfilment, position within the environment, location
aspects and behaviour policies, as well as to the users that
can interact with the system.

(2) Strategies and the decision procedures to allow the units
to take adequate measures or to anticipate failures and to
adapt the models according to new context data [16].

The set ups must as well depict a number of alternatives of
possible states or configurations that might be chosen for
further optimisation. However, history and time might keep
from taking decisions in these directions and may therefore
configurations be kept as future options. This notion of model
thresholds is also called Dual Reality [17], (possibly extended
to multiple realities)); the “gradual iterative” decision
mechanisms behind are outlined in [12].

D.Heterogeneity
Heterogeneity of units is referred to as the properties of

units being composed of diverse elements and using dissimilar
constituents. In DM, heterogeneous manufacturing units and
their constituents configure a networked and have to closely
collaborate. Overcoming heterogeneity is a central issue in
DM, as, due to the variety of devices and units involved, DM
is intrinsically heterogeneous. The units or their constituents
are to be connected and to configure networks comprising
different types of computing units, potentially with vastly
differing memory sizes, processing power, or basic software
architecture. In DM, heterogeneity may therefore be assumed
omnipresent, it occurs on all levels and for a number of
reasons. On the informational side, heterogeneity may
additionally come with different hardware platforms,
operating systems, or programming languages. On the
conceptual level, heterogeneity originates from different
understandings and modelling principles for the same real-
world phenomena.

Basically, two ways of coping with heterogeneous systems
can be differentiated:
1. Establishing a comprehensive unified theory and
2. Providing abstract data models and semantics.

In smart DM both directions are recognized. Inherent
heterogeneity- and integration issues of different components
as well as all challenges around are treated with novel
unifying network and control theory. The generic layer aspects
of the introduced model definitely allow separating
heterogeneous connectivity and collaboration issues as well as
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keep their break downs and fold ups. Therefore enabling
interactions between sets of heterogeneous ICT devices of
different brands and marks, i.e. interoperability, is condition
sine qua non in any DM scenario.

Moreover, heterogeneous networks require permanent
revision of network components with emphasis on real-time
operations requirements, so communication and sensing,
actuating and processing in meshed control loops are
supported

E. Interoperability
The property of diverse systems and subsystems to work

together (inter-operate) is referred to as interoperability.
Interoperability is defined, as soon as operable units are
available. Operability itself refers to the ability to safely and
reliably run a system, in line with general and unit specific
requirements. IEEE [18] defines interoperability as the ability
of two or more systems or components to exchange
information and to use the information that has been
exchanged. Interoperability can be understood as the
capability of ICT systems as well as all supporting processes
to exchange data as well as to allow sharing of information
and knowledge.

Issues in collaboration and co-operation of units appear in
larger contexts as communication between people,
communication between people and ICTs and also between
different ICTs. Consequently several levels of interoperability
are differentiated. Furthermore, IEC TC 65/290/DC identifies
levels of compatibility depending on the quality of
communication and application features in a cumulative scale.
Especially the term of Interchangeability is used as
intermediate level of communication and expresses an
ultimate interoperation. TCP/IP includes mechanisms that
address automatically; the most important implementations are
SLP, zero config, universal plug and play and UPnP.
Combinations of services and processes, as desired in DM, are
e.g. supported by service oriented architecture (SOA).
Functions are not addressed directly; instead services are
requested via defined interfaces. The service program acts as
an intermittent between the client and the provider. SOA is
therefore an important vehicle for pay services and a
significant step towards new concepts of smart DM for
addressing services via networks according to usage, as e.g.
offered by cloud providers. The major achievement of SOA is
the principle of encapsulation for implementing functionalities
on its generic level supporting fold unfold principles by hiding
or forgetting functionalities in certain situations.
Encapsulation also supports mappings between functionalities
on different levels of detail of the equipment and various
stages of granularity.

F. Autonomy
Units demonstrate autonomy or are called autonomous, if

these units are able to perform their actions without the
intervention of other entities. Autonomy includes the ability to
interact or to self-organise in response to external stimuli,
establishing a positive self-fed loop with the environment.

Innovations and developments have rapidly contributed to
higher intelligence of a number of manufacturing units
allowing self-organisation, self control and eventually full
autonomy of factory objects and units (Cloud). Autonomous
units may now do their communication independently and
may decide how to handle interactions with the outside world,
by use of de-centralised decision making and by the
formations of autonomous hub organisations with own rules
and procedures within a collaborative process or supply
network. For differentiation of actions and decision
mechanisms in context aware manufacturing equipment, a
differentiation of context dimensions may be introduced [19]:
• External (physical) refers to context that or captured by

units’ interactions or can be measured by hardware
sensors, i.e. location, movement, alignment parameters,
strategic input

• Internal (logical) is unit specific, i.e., goals, tasks,
objectives fulfilments, KPIs, improvement effects,
operations or processes.

Dependent on captured and monitored data, events or
stimuli, a manufacturing object may have to become active.
Most important are models for decision procedures, so the
manufacturing objects can adequately respond to monitoring
results, if actions are required. Models to support units on the
decision making also regard possible strategies to activate,
guaranteeing adequate alignment and the preconditions and
cases in which these strategies could be activated. The
objective in the model is to maximise the performance
obtained through the strategies activation, considering that an
active strategy positively or negatively influences the KPIs
defined to measure an objective.

Smart units may have capabilities to take certain actions as
simple as switching from state to state or as complex as
adapting the behaviour by other decision-making, action plans
for self-healing, self organising and self sustaining. Depending
of the smartness of the unit, the degree of autonomy may vary.

The starting point for a definition of a unit’s autonomy is
the ability of units to independently define and negotiate own
objectives and pursuing strategies to achieve or to approach
objectives. Within DM processes, autonomies are always
restricted by the mode how other network units activate their
strategies and how they define their objectives. Alignment of
strategies and the harmonization of objectives include
decisions concerning partners' selection, contract agreements,
objectives' re-definition and performances as well. The
network units have to keep own objectives and network
objectives aligned with other units objectives in the network or
check modified structures for collaboration by adapting or
renegotiating links, restructuring network solutions and
confirm or revise missions. Reciprocally, any misalignments
will result in possible conflicts between the implemented
strategies and the defined objectives, jeopardizing the benefits
of collaboration or even breaking up processes. Misalignments
and overstretching of the resource base certainly reduce or
eliminate a unit’s autonomy.

Standard Objective Bundle and negotiation of objectives is
outlined in [10]. A respective commercialised method for
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commodity background as discussed in the remote
manufacturing cloud, e.g. more machines of the same type in
different sites or different companies to fulfil large order
quantities in shorter time. Another field of scalability
discussions is the area of control and computing power in the
area of cloud computing.

III. CONCURRENCY MODES AND MECHANISMS - MODELS OF
MANUFACTURING

Whenever we talk about interacting, negotiating and
communicating objects, we always talk about respective
models of these objects performing such activities. Also
planning, decision and execution in manufacturing do
obviously not regard the units themselves but certain models
and attributes of these units that configure and are put into
relations. Each step may make use of a number of models
interacting, raising the question of how their dependencies and
simultaneous actions influence choices, highlight attributes or
require certain levels of detail of these models to be involved.
The manufacturing network units’ interaction structure must
be envisioned as an interrelations’ structure of specific
models, representing these units. Envisioned like this,
manufacturing does not just consist of simple units but of
objects that encapsulate rich model structures, able to unfold
numerous attributes and properties into the attached realm of
models.

Manufacturing networks may then be interpreted as specific
Hausdorff spaces. The topological nature of Hausdorff spaces
allows identifying network units (nodes) and to attach tangent
spaces to each one [21]. The set-up is rich enough to capture a
vast majority of configurations and decision situations
occurring in manufacturing networks. This is accomplished by
“attaching” tangent spaces carrying adequate models,
attributes, relations and aspects assigned to the manufacturing
networks’ nodes (Fig. 5). Moreover, these virtualisations of
manufacturing objects, also called mappings, capture e.g.
encapsulations of behaviour, fold and unfold properties, on-off
modes of self-organisation. Configurations may be mapped
and monitored as well by models, indicators and attributes,
and the views are expressed by composite attached models,
the reason why all mappings are assumed to be
homeomorphous.

Fig. 5 Production Networks’ units with attached tangent spaces
(models) as mappings of Hausdorff Space nodes according to [22]

In practical terms, the homomorphism postulate stands for

compatibility of models of different units. Models of tasks of
different units can form a process flow model only and models
of machines of different units compose a useful layout only, if
the respective units’ models are compatible. To be able to do
this easily, all involved virtualisations of the units will have to
be standardised in some way, so a collection of units
represented by attached models is instantly able to link, to
interact and to execute important procedures e.g. for
manufacturing planning, structuring, operating, linking,
improving and deciding.

To answer the question about which models are to be
attached for manufacturing applications, which properties and
attributes ought to be mapped, the chapters of manufacturing
systems planning and control history may be recalled. With
the sophistication of manufacturing, important abstractions
and experiences have been consolidated into a collection of
generally recognised models, instruments and tools. With the
introduction of computers in manufacturing, many of these
models and instruments (or derivates thereof) have been
successfully incorporated in standard software e.g. ERP, Cave,
DSS or facilities’ planners. Manufacturing management
generally makes intensive use of these models and model
systems for specific problem solving, routine decisions and
planning support, for instance for shopfloor planning,
adequate models are flow charts, Sankey graphs, DMU/VR
based on geometry data of buildings and machines.

As one trajectory for future manufacturing it may be kept in
mind, that manufacturing units may be imagined as carrying
all the models discussed above ready for application to link, to
compose, to negotiate and to decide (processed by own
computing power or remote). Manufacturing then appears as a
set of loosely coupled autonomous smart units, spontaneously
forming networks and executing processes; concurrent and
evolving planning; negotiating decisions, all by interrelating
models. This appearing set up seems to be quite different from
what we are accustomed to when describing manufacturing
and manufacturing management. Therefore it may be
considered worthwhile to take a closer look at this emerging
world of smart manufacturing units and the rules of the game
there and to search for characteristics and principles.

On a smaller scale, many of the phenomena stated have
already been encountered with configurations of DM [5].
Seeing all the similarities, the attempt to generalise and widen
up important principles that have been identified for loosely
coupled manufacturing systems, to the manufacturing
networks’ level, appears most promising. For start, a list of
properties for smart units in manufacturing may be given that
support compounding manufacturing processes of networked
elements. Most of the capabilities, which smart objects for
general use include already, are suitable for manufacturing
process set ups, therefore their adaptation is less a question of
requirements fulfilment, and it seems to be more a
specification matter.

Recognizing these potentials is surely not exaggerated to
postulate the necessity of a complete re-thinking of
manufacturing and a thorough revision of every well
established and habitually used, so far proven and
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uncontested, manufacturing setup. It’s not only the fact that all
solutions have been set up without employing such options
and technical possibilities, it is no longer possible to establish
factory centred solutions on the base of pure systems thinking,
widely ignoring the network nature of manufacturing. Most
prominent examples are deeply rooted for example the term of
process and supply chain in manufacturing; in reality we work
on the base of process and transformation stage networks,
which expose process chains ex post as planning and decision
results.

A. Behavior
Behaviour is the range of actions made by systems, or

abstract units, in interaction with other units and the
environment. A unit shows its state in indicators (variables,
data) and exposes its behaviour through methods (functions)
that react to certain events. Process parameters present the
behaviour of a unit and its interactions with other objects.
Monitoring tools enable the users to specify and to process-
level events such as inter process communication, as long as
these events are at the correct level of abstraction of the
network units, as successfully applied in DM [5]. As a
representation of the units’ behaviour, Spaces of Activity
(SoA) may be described by the units’ objectives, the resources
and constraints. In consequence, the SoA volume may be
identified as the unit’s decision space i.e. admitted zone for
the units’ state (Fig. 6). The unit’s behaviour, e.g. expressed
by corresponding indicators, gives input for decisions on
maintaining the unit’s self-organization mode or reducing
autonomy and calling for external interference. In cases of a
unit’s inability to cope with the objectives or the changes in
the environment, network “order parameters” may gain
influence on the units’ activities ((self) reproduction, (self)
destruction, (self) structuring).

Fig. 6 Space of Activity (SoA) as mapping of network node for
monitoring the Behaviour of the unit by relevant indicators and

observable

This “biologically” inspired manufacturing approach
addresses challenges in complex (unpredictable)
manufacturing environments tackling aspects of self-
organization, learning, evolution and adaptation [23]. They
easily adapt to unforeseen changes in the manufacturing
environment, and achieve global behaviour through interaction
among units [24]. Applied for manufacturing network
decisions, such behaviour thinking supports levelled
manufacturing network adaptation procedures.

B. Parallelism
An optimum base for collaborating using least resources

and time is to do substantial steps towards parallelism of all
actions and operations. Parallelism aims at reducing execution
time or improving throughput. Adding parallelism to an event
driven view requires reasoning about all possible chains of
transitions to determine events that might interfere with others.

Parallelism for mobile applications uses operation time and
requires sophisticated algorithms since it is not sufficient to
run just a few services in parallel. Mobile systems are power
constrained but improved wireless connectivity enables
shifting computations to servers or the cloud. Leading experts
state that, generally, parallel systems can be expected
supporting task parallelism and data parallelism, both essential
for decentralised and DM applications. Eventually each node
of a task can have multiple implementations that target
different architecture [8]. For manufacturing applications this
allows taking full advantage of the task parallelism on one
hand and running independent operations in parallel on the
other. Parallelism will revise process planning, for example,
by building sequences from independent sub-sequences. For
parallelism of operations in manufacturing, industrial
networks will strongly rely upon dynamic forms of
communication and coordination that handle non-predictable
situations by self-adaptiveness and self organization.

C.Iteration
Developing configuration options and decide about

favourable configurations is a highly iterative process and not
a straight-line journey. Loops back are possible, as factory and
network capabilities identified and may not fit or others may
give rise to potential new business opportunities. The
‘Iteration’ mode emphasises the fact that there is an inherent,
evolving nature to structuring. Iteration results in changes that
must propagate through the structure’s stages, requiring
continuous process rework. Within simple settings of
collocated operations, the challenge of managing can still be
achieved by conventional planning systems and respective
intra-organisational decision mechanisms. For networks,
management becomes much more complicated, as the
involved units and their roles are not stable, but evolve
dynamically. However precisely these properties enormously
increase a companies’ adaptabilities and strongly amplify
differentiations and uniqueness. This means continuous
restructurings and adaptations for manufacturing networks as
well. For the decisions on structuring, re-linking, or breaking
up connections in manufacturing networks, iterative
procedures develop both system structure models and map
behaviours onto structures vice versa, ensure the
manufacturing networks robustness, their stability against
uncertainties, operator mistakes, or imperfections in physical
and/or cyber components. Since integration into processes
must be orchestrated in order to achieve suitable performance
behaviours, it is necessary to ensure the expected alignment
with respect to the fit degrees, similar KPI or (estimated
values of) key alignment indicators (KAI) [15].

D.Encapsulation
In general, encapsulation is the inclusion of one thing
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within another thing so the included thing is
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and/or aggregated objectives’ systems.
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main processes, hence key productivity issues (e.g. cloud).
The use of resources along these virtual models will translate
into lower costs for all involved units. Early adopters of such
novel DM options might immediately establish so far unseen
KPI benchmarks and cause high competition pressure.
Specialization of manufacturers using complex and expensive
machinery or factories to develop certain products or sub-
products for other manufacturers is facilitated. Moreover these
systems might instantly demonstrate drastic changes in the
forms of manufacturing or manufactured products and,
especially, could initiate novel business models synthesising
new services and new products. Especially, Cloud
Manufacturing allows easy integration of applications and
processes both within an organization and between different
organizations that wish to collaborate. However, some of the
greatest concerns are security problems, loss of control
(infrastructure, services, and management), technology,
difficulty in migrating to other platforms, and loss of
reliability. Companies may feel most attracted to the hybrid
cloud, an option that might be reserved for applications, which
do not require any synchronization or highly specialized or
expensive equipment. Initially, hybrid solutions with large
portions of proper company implementations are expected.

Additional machine capabilities will completely and rapidly
change manufacturing all over the globe. Wireless
communication, powerful online identification and
localization devices have been successfully integrated in
manufacturing already; now novel upgrading functionalities
are introduced to the shopfloor. There is certainly much more
to come, especially if we imagine implanted or embedded
processors in practically any object and any piece of
equipment. Mechanisms can be implemented for virtually
composing products or for intelligent components finding each
other on the path to value creation. Powerful and efficient
applications, available as cyber physical systems, as Internet
of things, pervasive computing or machine to machine
communication will make DM a preferred model to produce.

Wireless technologies will further strengthen
telecommunications’ involvement in manufacturing. This
tendency has just started to gain ground by the introduction of
efficient tracking systems in synthesis with cloud computing
solutions. Manufacturers of computer hardware as well as
software vendors will have to take into account this
virtualisation of resources. After some reluctance of leading
software providers to offer these upcoming services e.g. cloud,
impressing solutions have quickly changed attitudes. Software
as a service, infrastructure as a service etc. are fully integrated
in important software service programs. Anything as a Service
(AaaS) could be the wording anticipating more upcoming
options. Additional equipment features, such as awareness,
autonomy, modularity, scalability and networkability will step
into the manufacturing thinking, which might be called smart
DM. Management should be aware of upgraded machines and
manufacturing equipment, orders and products, parts and
pieces. Networkability will gain utmost importance on all
levels, be it for all KPI’s on all levels, additionally introduced
network ability parameters or network rules. Management

could get prepared for situations where network ability and
alignment parameters have higher priority in comparison to
traditional KPIs. Moreover, management should be aware of
alternative network configurations at any time and have
evaluations ready. Time and history will, in most cases, inhibit
to switch to the optimum network configurations. It will only
be possible with some delay. Nevertheless all alternatives
should be prepared as plans, ready to be activated, as soon as
the implementation situations occur. Companies should
continuously question their strategies. Business models are
jeopardised and constantly flowing, key competencies keep
repositioning. Pressure will come from companies, taking
higher risks in outsourcing ICT, as the advantages are
amazing.

Important studies from renowned institutions indicate
rationalisation effects that could cut the workforce in industry
down to 50% within the next 10 years. The remaining half will
have skills that differ from today’s qualification schemes [27].
Man machine interfaces and models of employee involvement
have always been hot research spots and will continue to
provide a plethora of problems for intensive actions. However,
progresses in Body Area Networks will simplify many
discussions. The tendency shows a clear development towards
a strong involvement of digital natives on all levels and in all
sectors of industry. The shopfloor will be the domain for
digital experts, placing emphasis on developing IT skills and
new-media literacy. Observing important players from
telecommunication, hardware makers, software designers and
systems integrators and the innovation power behind, it is
obvious that there will be more intriguing innovations ahead.
All controls of machines, robots and other equipment may
easily be upgraded for emulating all capabilities and functions
in order to ensure full IP interoperability. Multi-agent systems
navigate units using polling and negotiating functionalities in
order to build up optimal process sequences. Ever-increasing
portions of manufacturing will become information, further
optimising resources’ consumption and instigating the reuse of
material as well as the after-use of products. Companies will
have to prioritize the upgrades their equipment and will have
to take “smart” investment decisions on new machines. The
melting of key information technologies with manufacturing
resources is only at the beginning of an era; the first humanoid
robot, able to replace humans on the shop floor in large scales,
is expected to appear, latest by 2025.
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