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Abstract—This paper attempts to define the validity domain of 

LSDP (Loop Shaping Design Procedure) controller system, by 
determining the suitable uncertainty region, so that linear system be 
stable. Indeed the LSDP controller cannot provide stability for any 
perturbed system. For this, we will use the gap metric tool that is 
introduced into the control literature for studying robustness 
properties of feedback systems with uncertainty. A 2nd order electric 
linear system example is given to define the validity domain of LSDP 
controller and effectiveness gap metric. 
 
Keywords—LSDP, Gap metric, Robust Control.  

I. INTRODUCTION 

HE goal of feedback is to use the principle of feedback to 
make the output of a dynamic process follow a desired 

reference accurately in spite of the external disturbances and 
any uncertainty in the dynamics of the process. Before the 
design of a feedback controller can begin, a mathematical 
model of the system to be controlled has to be constructed. In 
many cases, the modeling of complex systems is difficult, 
expensive and time consuming. It is impossible that 
mathematical model can exactly represent the behaviors of a 
physical system. The differences or errors between 
mathematical models and the physical system are generally 
called uncertainty. There are different methods to model the 
uncertainty region. Here we use additive perturbations to the 
nominal plant coprime factors [16]. This representation of 
uncertainty has no restriction on the number of right half plane 
poles and is capable of representing a wider class of systems. 
Also coprime factorizations are widely used in H∞ optimal 
control theory. 

The LSDP approach was firstly developed by McFarlane 
and Glover [13] and has been used successfully in many 
practical applications [1], [8], [10]. This approach is a simple 
and efficient robust multi-input multi-output (MIMO) 
controller synthesis technique that produces a controller that 
guarantees robust stability against normalized coprime factor 
uncertainty. The idea of the LSDP design is firstly to use well 
known loop shaping principles to introduce performance and 
robustness trade-offs and then, to allow the robustness 
optimization process to guarantee closed-loop stability.  

In this paper, we determine the validity range of a robust 
controller determined by the LSDP approach deal with 
parametric uncertainty of a shaped SISO linear model Gsh(s). 
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Indeed, for a linear model and a stabilizing controller, the 
stability robustness is defined as a radius of the controller as 
the smallest distance to a perturbation of the model which may 
cause the closed-loop system to become instable. Several 
distance notions for linear systems have been proposed, of 
which the so-called gap metric [17]. Then a simple and 
qualitative condition to verify if the LSDP controller stabilizes 
a perturbed model Gsh,∆(s) is to check whether the gap 
between Gsh(s), Gsh,∆(s) is less than the stability margin. It 
should be clear that a perturbed model at a distance is greater 
than the stability margin, will be destabilized by the LSDP 
controller that stabilizes the linear shaped model Gsh(s) with a 
stability margin equal to the gap between the two systems. 

The paper is organized as follows. The LSDP approach is 
introduced in Section II, the gap metric theory is described in 
section III. Section IV presents the validity domain of LSDP 
controller and the effectiveness gap metric on a second-order 
electrical linear system. 

II. LOOP-SHAPING DESIGN PROCEDURE (LSDP) 

A. Principle 

The method based heavily on the loop-shaping procedure of 
McFarlane and Glover [12], [13] that appears in some works 
[5], [6], [11]. The LSDP can be divided into three distinct 
steps as follow: 

1) Loop Shaping 
Using a pre-compensator V1(s) and/or a post-compensator 

V2(s), the singular values of the nominal plant are shaped to 
give a desired open-loop shape. The nominal plant G(s) and 
shaping functions V1(s), V2(s) are combined to form the 
shaped plant, Gsh(s) = V1(s) G(s) V2(s), as shown in Fig. 1. 
Weight selection is very important for the design. Typically, 
weight V1(s) and V2(s) are selected such as the open loop of 
the shaped plant has the following conflict properties: to 
achieve a good performance tracking, good disturbance 
rejection, large open loop gain (normally at low frequency 
range) is required. To achieve a good robust stability and 
sensor noise rejection, small open loop gain (normally at high 
frequency range) is required. 
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Fig. 1 Mapping Shaped plant Gsh 

2) Robustness Verification: 
We note by εmax the maximum robustness margin associated 

with norm bounded additive uncertainties on the system’s left 
normalized coprime factors (NCFs) [6]. If εmax ≤ 0.2 and εmax 
> 1 [14], then return to step 1, adjust the weighting function 
V1(s) and V2(s), else we go to step 3. 

3) Controller Computation and Implementation: 
For ε ≤ εmax calculate a controller K∞,opt that stabilizes Gsh 

(Fig. 2). The final controller Kf for the system G(s) is 
constructed by combining the controller K∞,opt with the 
shaping functions V1(s) and V2(s) such that Kf (s) = V1(s) 
K∞,opt(s) V2(s). The controller K∞,opt (s) is presented in the next 
section. 

 

 
Fig. 2 Controller for system G(s)  

B. Optimal Dynamic Controller K∞,opt Computation 

Consider the strictly proper state space representation of the 
open loop shaped plant Gsh: 

 

                       
sh sh
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where x is the state, y and u are the output and the input 
respectively and Ash, Bsh and Csh are matrices of the shaped 
plant in state-space representation. The K∞,opt controller is 
given by the transfer matrix [7]: 
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where W is given by: W = (I + X Z – (εmax)

-2 I)T and the 
matrices X and Z solve the control (respectively filtering) 
algebraic Riccati equations (CARE, FARE): 
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The robust controller K∞,opt can be solved by MATLAB@ 
with function ‘coprimeunc’ of the Robust Control toolbox. 
Additionally it computes the corresponding maximum 
robustness margin εmax from: 

 
                        εmax =  (1+ ρ(XZ))-1/2                                 (4) 

 
where ρ denotes the spectral radius. 

III. GAP METRIC THEORY 

Before the gap metric was introduced in [17] to study the 
robustness of feedback systems subject to modeling 
uncertainty, several authors developed computational tools 
notably in [2]-[4], [18] for a fairly general class of infinite-
dimensional systems. In [2], the authors show that the 
feedback optimization in the gap metric is equivalent to 
feedback optimization with respect to normalized factor 
perturbations. El-Sakkary [15] shows that the gap metric is 
better suited to measure the distance between two linear 
systems than a metric based on norms. Gap metric denoted by 
δg (Gsh, Gsh,∆) introduces the notion of “distance” between two 
nominal system model G and a perturbed model Gsh,∆ as the 
“gap” between their graphs. The calculation of the gap metric 
begins with two finite dimensional linear systems with the 
same number of inputs and outputs that left normalized 
coprime factorizations are given by: 

 
             Gsh = MU-1 Ñ, Gsh,∆ = (MU + ∆MU )

-1 ( Ñ + ∆Ñ)             (5) 
 

MU and Ñ (∈ RH∞) denote the left factors of the nominal 
system model G , ∆MU and ∆Ñ (∈ RH∞) model the uncertainty 
of right coprime factors of G with ║[ ∆MU  ∆Ñ]║∞ < ε. It can be 
shown that the gap metric can be computed using the 
projection operators or the coprime factorizations [15]: 
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(6) 

 
The gap metric can be calculated to any desired accuracy by 

using MATLAB@ Robust Control Toolbox and the command 
`gap metric'. The connection between the gap metric theory 
and LSDP approach of section 2 is due to Georgiou and Smith 
[2]. The following theorem [2] gives necessary and sufficient 
conditions for the gap between Gsh and Gsh,∆ on the one hand 
and, on the other hand, the extent that a controller K∞,opt 
stabilizes a right coprime factor perturbed plant Gsh,∆ given 
that it robustly stabilizes a nominal plant Gsh. 
Theorem 1[2]. Consider a shaped model Gsh with a left 

normalized coprime factorization Gsh = MU-1 Ñ and a 

controller K∞,opt that stabilizes it. Take a real number εmax so 

that 0 ≤ εmax ≤ 1. Then, these two statements are equivalent: 

a. The closed loop pair [Gsh ,∆, K∞,opt] is stable for every 

uncertain model Gsh ,∆ with Gsh ,∆ = ( MU + ∆MU )
-1( Ñ + ∆Ñ) 

where ∆MU and ∆Ñ (∈�H∞) and ║[ ∆MU ∆Ñ]║ < εmax. 
b. The closed loop pair [Gsh ,∆, K∞,opt] is stable for every 

model Gsh ∆ for which δg (Gsh, Gsh ,∆) < εmax        ▄ 

G V1 + 

r(t) y(t) u(t) 
K∞, opt 

 
V2 

 

Kf 

Gsh 

V2 G V1 

y(t) u(t) 

post-compensator pre-compensator 
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IV. SIMULATION EXAMPLE: 2ND ORDER ELECTRIC LINEAR 
SYSTEM  

We consider a 2nd order linear electrical system represented 
by the following electric circuit: 

 

 
Fig. 3 Second order electric linear system circuit 

 
With R1 = R = R2 = 68 KΩ, C1 = 10 nF and C’ a variable 

capacity. The system is defined by the following transfer 
function: 

 

               

2
2

1 2 1 1 1 2

R
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R R R C C' s R R C s R
=

+ +
             (7) 

 

or yet canonical form: 
 

                     

2
0

2 2
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s 2 s

k w

m w w
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+ +
                       (8) 

 
as: 
• K the static gain: 

 
                                          1k =                                         (9) 

 

• w0 the natural frequency 

 

                   

             
0

1 1

1
R R C C '

w =                                             (10) 

 
• m  the damping ratio 
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2
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2 R C '

m =                                          (11)          

 
For the nominal representation G(s) we set: 

 
                  8

0
'C '    C    0.033 10 F−= =                           (12)      

 
and G(s) can be written as:   
 

            

68000
G(s)

(s 1522.6 ) (s 43041)
=

+ +
                              (13) 

 
For the weighted representation Gsh(s) we choose the 

weighting functions V1(s) and V2(s) as: 
 

                               

1

2

3
V (s) =

(s + 0.01)
V (s) = 1







                              (14)      

 
The filter can increase the gain in low frequencies and 

reduce the gain at high frequencies. As a result, Gsh (s) is 
written: 
 

 

5

3s 3 2 3h

10
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        (15) 

 
From (15) the transfer matrix Gsh (s) is defined by the 
following state-space matrix Ash, Bsh, Csh and Dsh: 
 

     

4
sh
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( )shC 0 0 46.8737=                 

shD 0=
          

(17) 

 
By applying the H∞ loop shaping method, the robustness 

margin εmax is founded at 0.7006 from (4). This value indicates 
that the selected weighting function is compatible with the 
robust stability requirement. Based on the conventional 
technique presented in Section II, the conventional H∞ loop 
shaping controller is synthesized as: 
 

2 6 9

3 4 2 7 10,

151.2 s 6.74 10 s 9.911 10
s 4.472 10 s 7.242 10 s 1.0

(s) =
1 0

.
6 1optK∞

+ +
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(18) 

 
We represent, the bode diagrams of G(s) and Gsh(s) in Fig. 

4: 
 

 

 

Fig. 4 Bode diagrams of G(s) and Gsh(s) 
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To test the performance of the K∞,opt robust controller to 
guarantee the robust stabilization of shaped closed loop 
system

shG (s) over parametric uncertainties, we propose to 

disturb the nominal model G(s) by varying the capacitance 
value 

0
'C . This variation results from an added parametric 

uncertainty to the value of 
0
'C  as: 

 
8

C' 0 C' 0 C'
' 'C'( ) C / C 0.033 10 F  0and−∆ = + ∆ = ∆ >      (19) 

 
As a result, from (4) we get the uncertain system G∆c’(s): 
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with: 
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Also we obtain the following uncertain shaped 

representation Gsh,∆c’(s) as: 
 

                   C' C'sh, 1 2G (s) V (s) G (s) V (s)∆ ∆=             (23) 

 
In order to test the stability margin Gsh,∆c’(s) in terms of the 

parametric uncertainty ∆c’ we represent in Figs. 5 and 6 the 
evolution of the corresponding gain and phase margins (Mg, 
Mφ). From these figures, we see that the uncertain shaped 
model becomes unstable for ∆c’ ≥ 0.4902 10-5 F since Mφ 
(Gsh,∆c’) ≤ -0.036º and Mg (Gsh,∆c’) ≈ 0 dB. It is interesting 
therefore to determine the range variation of the uncertainty 
parameter ∆c’ in which the robust controller K∞,opt guarantees 
the robust stabilization of uncertain shaped system Gsh,∆c’(s). 
In this case, using the gap metric theory we propose to 
quantify from (6) the distance between the shaped system Gsh 
and the uncertain shaped system Gsh,∆c’ relative to the 
maximum stability margin εmax. This is illustrated in Fig. 8 
plotting the variation of the gap metric δg (Gsh, Gsh,∆c’) as 
functions of ∆c’ as δg (Gsh, Gsh,∆c’) ≤ εmax. 

 

 

Fig. 5 Evolution of Mφ (Gsh,∆c’) as function of ∆c’ 

 

Fig. 6 Evolution of Mg (Gsh,∆c’) as function of ∆c’ 

 

 

Fig. 7 Evolution of m∆c’ as function of ∆c’ 
 

 

Fig. 8 Evolution of δg (Gsh, Gsh,∆c’) as function of ∆c’ 
 

From Fig. 8, it may be observed that the limit value δg (Gsh, 
Gsh,∆c’) = εmax is surpassed at ∆c’ = 0.498 10-5 F. This value is 
above ∆c’ = 0.4902 10-5 F that characterizes the instability of 
uncertain shaped system Gsh,∆c’. In Table I, we summarize for 
three values ∆c’, ∆c’ = 4.6775 10-9 F, ∆c’= 10-6 F and ∆c’ = 
0.494 10-5 F performance for corrected system by open loop 
robust controller K∞,opt in terms of: 
• Gap metric δg (Gsh , Gsh,∆c’)  
• Phase margin Mφ (K∞,opt Gsh,∆c’).  
• Gain margin Mg (K∞,opt Gsh,∆c’).  

We propose to compare the closed loop performance 
correction K∞,opt with respect to the following classical PID 
control  
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where N = 3632.7536, Kp = 1.8417, Ki = 8.2761 and Kd = -
0.0003. In Figs. 9-20 are shown the reference, the output and 
the input signals using the robust controller K∞,opt and the 
classical PID control considering ∆c’ = 4.6775 10-9 F , ∆c’ = 
10-6 F and ∆c’ = 0.494 10-5 F. In addition, it is proposed to test 
the performance of the robust controller K∞,opt for ∆c’ change 
over time as 0 ≤ ∆c’(t) ≤ 2 10-5 F. This variation is defined by 
(25) and shown in Fig. 21. So, we track in Figs. 22 and 23 the 
input and output signals evolution respectively in the presence 
of the controller K∞,opt. 
 

    
( )5

C' 10 1 (0.15 ) (0.( ) 6 )sin tt cos tπ π−∆ = +
        

(25) 
 

TABLE I 
 ROBUST CONTROLLER PERFORMANCE  

 ∆c’ 4.6775 10-9F 10-6 F 0.494 10-5 F 

 C’( ∆c’) 5.0075 10-9 F 10-6 F 0.494 10-5 F 
Gap metric δg (Gsh , Gsh,∆c’) 9.7559 10-4 0.199 0.7003 

Phase margin Mφ (K∞,opt Gsh,∆c’) 89 ° 89 ° 89 ° 
Gain margin Mg (K∞,opt Gsh,∆c’) 54 dB 18.4 dB 1.41 dB 

K ∞,opt Robust Controller for ∆c’ = 4.6775 10-9 F 
  
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Evolution of the output signal y(t) and reference r(t) for ∆c’ = 
4.6775 10-9 F 

 

 

 

 

 

 

 

 

            
 
 
 

Fig. 10 Evolution of input signal u(t) for ∆c’ = 4.6775 10-9 F 
 
 
 
 
 
 
 

K ∞,opt Robust Controller for ∆c’ = 10-6 F  
 
 

 

 

 

 

 
Fig. 11 Evolution of the output signal y(t) and reference r(t) for ∆c’ = 

10-6 F 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12 Evolution of input signal u(t) and reference r(t) for ∆c’ = 10-6 
F 

K ∞,opt Robust Controller for ∆c’ = 0.494 10-5 F 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 13 Evolution of output signal y(t) and reference r(t) for ∆c’ = 
0.494 10-5 F 

 
 
 
 
 
 
 
 
 
 
 

Fig. 14 Evolution of input signal u(t) for ∆c’ = 0.494 10-5 F 
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Signal de sortie y(t)

PID Controller for ∆c’ = 4.6775 10-9 F 
 

 

 
 
 
 
 
 
 
 
 
 

Fig. 15 Evolution of the output signal y(t) and reference r(t) for ∆c’ = 
4.6775 10-9 F 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 16 Evolution of the input signal u(t) for ∆c’ = 4.6775 10-9 F  

PID Controller for ∆c’ = 10-6 F 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 17 Evolution of the input signal u(t) for ∆c’ = 4.6775 10-9 F 
 

 

 
 
 
 
 
 
 
 
 
 

Fig. 18 Evolution the input signal u(t) for ∆c’ = 10-6 F 
 
 

PID Controller for ∆c’ = 0.494 10-5 F 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 19 Evolution of the output signal y(t) for ∆c’ = 0.494 10-5 F 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 20 Evolution of the input signal u(t) for ∆c’ = 0.494 10-5 F 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 21 Evolution of ∆c’ (t) 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 22 Evolution of the input signal u(t) for 1.6941 10-21 ≤ ∆c’ ≤ 2 
10-5 F 
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Fig. 23 Evolution of the output signal y(t) a reference r(t) for 1.6941 
10-21 ≤ ∆c’ ≤ 2 10-5 F 

 
The simulation and experimental results showed that the 

robustness and efficiency of the robust controller K∞,opt was 
gained when compared with the classical PID control. Indeed 
in Figs. 15-20 shown performance of PID controller present 
oscillations that are amplified as and as we increase the value 
of the parameter uncertainty ∆c’. This is explained by the 
reduction of the damping coefficient m∆c’ increasing ∆c’ 
because uncertain system G∆c’(s) becomes increasingly 
oscillating and approaching instability. Indeed, from (22) the 
value of m∆c’ changes from 0.7066 for ∆c’= 4.6775 10-9 F to 
0.05 for ∆c’ = 10-6 F and then to 0.0225 for ∆c’= 0.494 10-5 F. 
However the performance and robustness of LSDP controller is 
significantly more authoritative than classical PID control 
system design. Indeed, we see from Figs. 11 and 12 are small 
oscillations, and from Figs. 10, 12 and 14, the input signal 
shows no saturation. 

From Table I, the K∞,opt robust controller stabilizes Gsh,∆c’(s) 
near the zone of instability characterized for ∆c’ ≥ 0.4902 10-5 
F. Indeed, for ∆c’ = 0.494 10-5 F and from Table I, we get 
through the corrector K∞,opt margin phase Mφ (K∞,opt Gsh,∆c’) = 
89° and margin gain Mg (K∞,opt Gsh,∆c’) = 1.41 dB. In addition, 
we note that these performances stability are immediately 
taking into account the gap metric theory. Indeed, when the 
shaped system Gsh(s) is unstable, we have in Fig. 8 for ∆c’ = 
0.494 10-5 F a gap metric δg (Gsh, Gsh,∆c’) = εmax. That is to say 
from the result b of Theorem 1, the K∞,opt robust controller 
stabilizes the K∞,opt uncertain system checking δg (Gsh, Gsh,∆c’) 
≤ εmax . 

V. CONCLUSION 

In this paper, we have shown that for a linear system, the 
validity of the LSDP approach to maintain the desired 
robustness depends on uncertainty domain as-well defined. 
The latter is obtained by calculating the gap metric between 
the nominal linear system and the corresponding perturbed 
system, depending on the robust margin calculated by LSDP 
approach. Indeed, a simple and qualitative condition to verify 
if the LSDP controller stabilizes a perturbed model is to check 
whether the gap between the two systems is less than the 
stability margin. Finally, we have shown the robustness and 

efficiency of the LSDP robust controller is gained when 
compared with the classical PID controller. 
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