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Abstract—Modeling and forecasting dynamics of rainfall 

occurrences constitute one of the major topics, which have been 

largely treated by statisticians, hydrologists, climatologists and many 

other groups of scientists. In the same issue, we propose, in the 

present paper, a new hybrid method, which combines Extreme 

Values and fractal theories. We illustrate the use of our methodology 

for transformed Emberger Index series, constructed basing on data 

recorded in Oujda (Morocco).  

The index is treated at first by Peaks Over Threshold (POT) 

approach, to identify excess observations over an optimal threshold u. 

In the second step, we consider the resulting excess as a fractal object 

included in one dimensional space of time. We identify fractal 

dimension by the box counting. We discuss the prospect descriptions 

of rainfall data sets under Generalized Pareto Distribution, assured by 

Extreme Values Theory (EVT). We show that, despite of the 

appropriateness of return periods given by POT approach, the 

introduction of fractal dimension provides accurate interpretation 

results, which can ameliorate apprehension of rainfall occurrences. 

 

Keywords—Extreme values theory, Fractals dimensions, Peaks 

Over Threshold, Rainfall occurrences.  

I. INTRODUCTION 

HE analysis and the modeling of rainfall occurrences is 

typical problem in applied hydrometeorology [1]-[4]. The 

development of a rainfall occurrence model is increasingly in 

demand; not only for data generation purposes, but also to 

provide some useful information in various applications which 

includes water resource planning and management [5], [6].  

Literature offers two categories of rainfall modeling. The 

first one concerns occurrences [7], while the second category 

is devoted to extreme nature of rainfall using Extreme Value 

Theory [8], especially the Peaks Over Threshold (POT) 

approach [9]. This category has received an increasing 

attention, especially with rising multiple types and 

occurrences of climatic extreme events [10], [11]. The 

intermittency of those events is one reason to use multifractal 

models which can accommodate the spatial patterns at long 

accumulation sizes [12]. 

In this paper, we develop a hybrid approach based on 

fractals and Extreme value theories. To analyze performances 

of this approach we elaborate a monthly climatic composite 

index based on Emberger index. Observations from the 

elaborated time series have both the advantage to meet the 

validity conditions of extreme values theory and also the 

combination of the most representative factors of climate, 

namely rainfalls.  
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The L. Emberger [13] pluviothermic quotient is expressed 

as:  
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Rainfalls are represented by the annual average of rainfall 

(P). Temperature is characterized by the average of the 

minimum temperature of coldest month (m) and the average of 

the maximum temperature of warmest month (M). 

Evaporation is evaluated by using the extreme amplitude (M-

m). 

We identify excess of monthly climatic composite index 

(see (9)), determined by POT approach. On this set of 

observations, we use fractal theory to model the chaotic 

behavior and we compare results with assumed asymptotic 

distribution, named Generalized Pareto Distribution. The use 

of POT avoids drawbacks of empirical threshold, used to 

distinguish rainy and non rainy days. Rain-day may be given 

as a day with measurable rain or as a day with a total rainfall 

greater than a selected threshold [14]-[16].  

The definition of a rain-day or what is considered the daily 

rainfall threshold (DRT) is a critical decision, because it has a 

fundamental influence on any analysis of the rainfall regime 

such as the rainy season length (RSL), the number, duration, 

and yield of rain-spells [17]. In fact, the selection of a 

threshold should be chosen as a compromise. If the threshold 

is set too low, many events with minute rainfall will not be 

screened out and will remain as irrelevant data in an analysis 

of extreme. On the other hand, if the threshold is set too high, 

there will be few data for analysis and the results may be 

highly sensitive to the depths recorded in just one or two 

events [18].  

In this regard, our study intends to use Peaks Over 

Threshold (POT) approach, to identify excess observations 

over an optimal threshold u. This threshold is identified by a 

statistical objective approach, namely called Multiple 

Threshold Method (MTM) [19].  

It should be noted that in our study, we use not directly 

rainfall but transformed Emberger Index, because rainfall data 

are not statistically independents. In addition, results obtained 

from the index allow more general conclusions and global 

finding, especially because this index is intimately related with 

rainfall and climate behavior [13]. Resulting series obtained 

from threshold excess index allow identifying fractal 

dimension of exceeding occurrence. Despite of the 

appropriateness of return periods given by POT approach, the 

introduction of fractal dimension provides accurate 

interpretation results, which can ameliorate modeling and 
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apprehension of erratic characteristics of climatic variables, 

such as rainfalls.  

II. MATERIALS AND METHODS 

A. Extreme Values Theory and Peaks over Threshold 

Approach  

Climatologists have begun to use Extreme Value Theory in 

recent years. Reference [20] shows that EVT is entirely 

appropriate, to solve a range of problems related to climatic 

extremes. Conceptually, there are two related ways of 

identifying extremes in real data. The first approach considers 

maximum of observations in successive periods, for example, 

months or years. These selected observations constitute the 

extreme events. The second approach focuses on the 

realizations exceeding a given threshold u. The block maxima 

are the traditional method used to analyze data with 

seasonality, as for instance hydrological data. However, the 

threshold method uses data more efficiently and, for that 

reason, seems to become the most chosen method in recent 

applications. The main objective of called Peaks over 

threshold (POT) method is to consider the distribution 

function Fu of values of x above a certain threshold u, when 

the distribution F of X is unknown (or in the case when it is 

difficult to extract Fu on the basis of known distribution F). 

Reference [21] confirms that for a large class of underlying 

distribution functions F, the conditional excess distribution 

function Fu(y), for u large, is well approximated by: 
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is the so 

called Generalized Pareto Distribution (GPD). Where σ  is the 

scale, ξ  is the shape. The tail index ξ gives an indication of the 

heaviness of the tail: the larger ξ , the heavier the tail.  

It should be noted that the implementation of POT method 

involves the following steps:  

� Select the threshold u.  

� Fit the GPD function to the exceedances over u. 

� Compute point and interval parameter estimations. 

Selection threshold step is the most critical one. Theory tells 

us that u should be high in order to satisfy Pickands-Balkema-

de Haan theorem, but the higher the threshold is, the less 

observations are left for the estimation of the parameters of the 

tail distribution function.  

Numerical methods are based on objective formulas. We 

choose in this paper, to use a multiple threshold method 

(MTM) introduced by [21]. 

B. Fractal Dimension 

Many natural phenomena are better described using a 

dimension between two whole numbers, i.e., a fraction. Thus, 

a fractal curve can have a dimension between one and two in 

contrast to the straight line that is one dimensional. The fractal 

dimension measures how much complexity is being repeated 

at each scale. The notion of dimension most commonly used is 

that of Hausdorff dimension [22]-[24]. The main problem with 

Hausdorff dimension is it can be fairly hard to calculate in 

general. So, some other notions of dimension have been 

developed which are easier to calculate, such as box-counting 

dimension: 

Definition: Let nF R⊂  be a bounded set, ( )N Fδ  is the 

smallest whole number of at most diameter δ  covering box F. 

The upper and lower dimensions are defined respectively by:  

 

δ
δ

δ log

)(log
inflim)(dim
0 −

=
→

FN
FB

                  (4) 

 

and 

δ
δ

δ log

)(log
suplim)(dim

0 −
=

→

FN
FB                 (5) 

 

If both limits are equal, the box dimension of F is: 
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In practices, we use box counting algorithm, which is 

intuitive and easy to apply. 

Given a sequence ( )nε  decreasing and tends to 0 slowly 

enough (as a geometric sequence, for example). The fractal 

object (E) is covered with a mesh network square of side ( )nε , 

and includes the number 
nΩ  of square meeting point E. 

The fractal dimension is then:  
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The corresponding log-log diagram is defined as: 
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For different value of
 nε , we find the number nΩ . After 

this we draw this plot, and the fractal dimension is the 

opposite of the slope. 

This method is very simple to use, but it has some serious 

drawbacks. In particular, if 1

nε
is not an integer, the square of 

side nε overflow will generally left and right of the graph of 
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series, which distorts results and introduces irregularities in 

the diagram (8), especially when nε   is great.  

C. The Proposed Framework 

To implement our methodology, we suggest the following 

algorithm steps: 

Step 1. Construct transformed Embreger Index (Itransformed) 

observations based on: 
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where P is the monthly maximum rainfall, M is the monthly 

maximum temperatures and m is the monthly minimum 

temperatures. 

Step 2. Apply POT approach combined with MTM Threshold 

selection method to data obtained from step1 and adjust 

appropriate GPD. In this step, we have the value of 

threshold (u), observations which exceed the value (u) 

(excess over u) and GPD adjusted to excess. 

Step 3. Assign the value 1, if the observation (from step1) 

exceeds the threshold u (from step2), 0 if not. Then the 

representation of a new constructed process is obtained 

by Fig. 1: 

 

 

Fig. 1 Schematic representation of climatic process (transformed 

Emberger index) and definition of the Xi , Yi and Zi series. 

 

Note that Xi is constructed Emberger index series, Yi is the 

series of excxess over thresheold u and Zi is the binary series 

of occurred and no occurred excess. 

Step 4. Calculate fractal dimension of Zi series (step3) by Box 

counting method and characterize its chaotic behavior. 

Step 5. Interpret obtained results, especially return periods and 

fractal dimension. 

D. Data 

The studied series is based on climate index, which contains 

variables climate (rainfalls and temperature). Corresponding 

climate index data are recorded in Oujda.  

The choice of this region is justified by intensity of extreme 

events which occur frequently in this region. The Oriental 

Region has a strategic location in the Mediterranean, because 

of its proximity to Europe and its immediate neighborhood 

with Algeria and the rest of the Maghreb. 

Rainfalls recorded annually in the eastern region are low, 

random and sparse. Rainfall varies between years and during 

the year. The maximum temperature is stable or it varies little 

during the year.  

 

Fig. 2 Evolution of monthly extreme rainfall in Oujda, during 1994 to 

2005 

 

In summer, Temperature Max is always above 30°C, 

recorded mainly during the months of July and August. The 

minimum temperature is usually recorded in winter and 

especially during the month of January. Fig. 2 shows the 

evolution of rainfall during the period 1994-2005. The 

evolution presents two different patterns: The first is from 

1994 to 1999 and characterized by three notable pics (March 

1994, November 1996 and August 1998). Rainfalls in the 

second period are very volatile and not exceed 55 mm. We can 

note also seasonal characteristics of rainfalls. 

 

 

Fig. 3 Evolution of elaborated index (I) 

 

Fig. 3 shows that, the representation of (Itransformed) is very 

close to rainfalls one. Itransformed has the same structure of 

rainfall evolution. In addition, we can note that Itransformed is 

very volatile so, this justifies the study of extreme values of 

this index. In the following, we will focus on the application 

of our methodology to Itransformed series. One objective is to 

compare POT approach and fractal theory results.  

III. RESULTS AND DISCUSSIONS 

The application of MTM algorithm leads to a threshold 

value about 440. The estimation of shape and scale parameters 

is obtained by maximizing the likelihood function. This 

approach is asymptotically the best for large samples. So, we 

can fit the following distribution to transformed Embreger 

Index excess: 
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These results allow assuming that (Itransformed

belongs to a family of Frechet, with a tail index equal to 0.03. 

On the statistical level, this finding illustrates lack of 

normality, excess skewness and leptokurtosis (I

 

Fig. 4 Fréchet and normal distributions

 

Fig. 4 shows for the same quintile x0, that the probability 

calculated by Normal distribution is less than the one 

calculated by Fréchet distribution. So, Normal distribution 

underestimates the probability of realization of an extreme 

event. In This case, the use of Fréchet distribution allow

alerting decision makers in the good times to guard against 

risks. 
Fréchet distribution is largely used. Applications range

accelerated life testing through to earthquakes, floods, horse 

racing, rainfall, queues supermarkets, sea currents, winds 

speeds and track race. In our case, Fréchet distribution 

confirms that (Itransformed) exceeds very often (high probability) 

the large values. This, characterize climate instability which is 

illustrated by extreme events occurred in eastern region of 

Morocco, and which can be related to precipitations and 

temperatures. This statement is corroborated by several 

climate statistics, which confirm that the absolute duration of 

summer drought in the region, can greatly exceed two months.

To achieve our hybrid method, we proceed in the following, to 

model the chaotic behavior of Itransformed 

This will be done by the determination of its fractal dimension 

based on box counting method.  

The implementation of Box counting method consists to 

identify the slope (D) of the graph represented by:
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nε  is the size of boxes; ( )nN ε  is the minimum of number of 

boxes, needed to cover the hole of represented series (in our 

case, the series is Itransformed excess occurrences).

To determine number and size of boxes, we elaborated a 

computing program on VBA. Results are given in 
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transformed) distribution 

belongs to a family of Frechet, with a tail index equal to 0.03. 

this finding illustrates lack of 

normality, excess skewness and leptokurtosis (Itransformed). 

 

Fig. 4 Fréchet and normal distributions 

, that the probability 

calculated by Normal distribution is less than the one 

calculated by Fréchet distribution. So, Normal distribution 

underestimates the probability of realization of an extreme 

event. In This case, the use of Fréchet distribution allows 

decision makers in the good times to guard against 

Fréchet distribution is largely used. Applications range from 

accelerated life testing through to earthquakes, floods, horse 

racing, rainfall, queues supermarkets, sea currents, winds 

eds and track race. In our case, Fréchet distribution 

) exceeds very often (high probability) 

the large values. This, characterize climate instability which is 
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climate statistics, which confirm that the absolute duration of 
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This will be done by the determination of its fractal dimension 

The implementation of Box counting method consists to 

he slope (D) of the graph represented by: 
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is the minimum of number of 

boxes, needed to cover the hole of represented series (in our 

excess occurrences). 

To determine number and size of boxes, we elaborated a 

computing program on VBA. Results are given in Table I: 

TABLE I

NUMBER OF BOXES 

Size of boxes  
(Months) 

Number of 
boxes 

20 = 1 68 

21 = 2 41 

22 = 4 26 

23 = 8 14 

24 = 16 8 

25 = 32 5 

26 = 64 3 

27 = 128 2 

28 = 256 1 

 

Fig. 5 Representation of Ln (size of boxes) and their corresponding 

Ln (Number of boxes)

 

Fig. 5 shows that the relation between Log (size of boxes) 

and Log (number of boxes) can be 

relation. As practically considered, an object shows fractal 

behavior when the log (unit of measurement) plotted against 

the log (number of units, N) for several scales is a straight 

line. In this case, the fractal dimension is give

of the slope, D, in: 
 

( )( )N nεlog

 

where c is a constant. To determine D, we regress 

( )log ε , Tables II and III show the obtained results:

TABLE II

REGRESSION RESULTS 

R Square Adjusted R Square

0,998 0,998 

TABLE III

REGRESSION RESULTS 

Model 
Unstandardized Coefficients

B Std. Error

(Constant) 4,231 0,037

Size_Boxes -0,752 0,011

 

Regression results characterize the chaotic behavior of 

Itransformed excesses occurrences by fractal dimension of value 

about 0,75.  

TABLE I 

OXES FOR DIFFERENT SIZES 

Number of LOG 

Size of boxes 

(Months) 

Number of 

boxes 

0,00 4,22 

0,69 3,71 

1,39 3,26 

2,08 2,64 

2,77 2,08 

3,47 1,61 

4,16 1,10 

4,85 0,69 

5,55 0,00 

 

Fig. 5 Representation of Ln (size of boxes) and their corresponding 

Ln (Number of boxes) 

Fig. 5 shows that the relation between Log (size of boxes) 

and Log (number of boxes) can be represented by a linear 

As practically considered, an object shows fractal 

behavior when the log (unit of measurement) plotted against 

the log (number of units, N) for several scales is a straight 

line. In this case, the fractal dimension is given by the opposite 

) ( ) cD n +−= εlog.                (12) 

here c is a constant. To determine D, we regress ( )log ( )N ε on 

II and III show the obtained results: 

 

TABLE II 

ESULTS (MODEL SUMMARY) 

Adjusted R Square Std. Error of the Estimate 

0,06059 

 
TABLE III 

ESULTS (COEFFICIENTS) 

Unstandardized Coefficients Standardized Coefficients 

Std. Error Beta 

0,037  

0,011 -0,999 

Regression results characterize the chaotic behavior of 

excesses occurrences by fractal dimension of value 
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Itransformed excesses occurrences related to Oujda location, 

defined as a set of excess periods observed, is regarded as a 

fractal object belonging to one-dimensional space of time (a 

time series is 1-dimensional). So necessarily, the dimension of 

our index is bounded by 0 and 1. This means that the index 

occupy a fraction of the available space greater than a single 

point (dimension 0), and lower than a line (dimension 1).  

As defined in methodology section, fractal dimension 

provides a useful tool to quantify systems complexity. In fact, 

fractal dimension counts the effective number of degrees of 

freedom in the dynamical system. In our case study, the value 

of 0.7, close to 1, confirms that Oujda region is characterized 

by a predominance of extreme events, given the fact that we 

privileged the study of excess above a given threshold. 

In addition, we can evoke an important conclusion related 

to resulting fractal dimension. The value about 0.7 near to one 

and which means that the constructed index, exceeds the given 

threshold 68 times from 143 months, confirms the high 

frequency of extreme events, in addition to high variability 

rainfall amounts, in Mediterranean climate.  

It should be noted that the choice of threshold impacts the 

value of fractal dimension. Thus, as mention in the table 

below, for different values of threshold, chosen by varied 

methods as mean of series values or MTM, one can obtain 

different values of fractal dimensions (see Table IV): 
 

TABLE IV 

FRACTAL DIMENSION FOR DIFFERENT VALUES OF THRESHOLD 

Selection Threshold Threshold Fractal dimension 

Arbitrarily 1800 Invalid (non fractal behavior) 

Mean of series values 669 0,69 

MTM 440 0,75 

Arbitrarily 300 0,78 

Arbitrarily 50 0,83 (graph very close to a line) 

 

In comparison with MTM threshold considered as an 

optimal value because chosen objectively, we find that a very 

remote values (50 or 1800) give very confused results. For 50 

we obtain nearly a line graph while for 1800, we conclude that 

excess value has no fractal behavior.  

Thus, as mention early, the choice of threshold represents a 

crucial step in this kind of studies. This, justify the use of 

MTM for the threshold selection. 

To confirm the high frequency of extreme events in the 

studied region, we explore the relationship between the 

probability of occurrence of an event corresponding to p 

quintile and the return period T (T>=2), given as: 

 

T
p

1
1 −=

                                   (13)                                                                                          

 

The return period and frequency are statistical descriptors of 

the severity of an event. The return period is the expected 

length of time between two events that exceed a specific 

magnitude. Frequency, or exceedance probability, is the 

inverse of the return period. For our case we obtain very small 

values of return periods. This corroborates the obtained fractal 

dimension value (0.75). 

The high information quantity is obtained in the high 

frequency domain. By calculating fractal dimension of excess 

index occurrence, it was statistically proven the existence of 

relationship between this dimension and frequency. For our 

study, we have proved empirically that a low return period is 

associated with a high frequency and this implies a high 

fractal dimension, so chaotic events are usually characterized 

by a high frequency. These results allow concluding that the 

studied region is exposed to many climatic extreme events.  

IV. CONCLUSION 

A new hybrid method, which combines Extreme Values and 

fractal theories, is proposed for describing and analyzing time 

series behavior. Performances of this new method are 

analyzed on both empirical and theoretical views. It should be 

noted that the pretreatment of Embrger index which appears in 

empirical part of this article, was justified by needs to meet 

some necessary theoretical hypothesis. 

As results shows, our methodology approach avoids 

drawbacks of classic threshold choice methods, provides a 

simple algorithm for calculating fractal dimension of extreme 

events and, exhibits a close relationship between this 

dimension and frequency. 
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